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Mixture models are often used for clustering; i.e., to summarize data that has multiple modes.
This is often the case when the data is sampled from multiple sub-populations (i.e., categories),
but individual data items are not labeled as to which of the sub-populations they come from.

Consider the task of summarizing the data in Figure 1. A common technique for performing
this task is to use a statistical model known as a mixture model. Relative to many other models
for estimating densities, mixture models have a number of advantages. First, mixture models
can summarize data that contain multiple modes. In this sense, they are more powerful than
distributions from the exponential family (e.g., Gaussian, binomial, Poisson, etc.). Second, mixture
models are parametric models. Methods based on probability theory, such as maximum likelihood
and Bayesian inference methods, are often easily applied to mixture models. Third, mixture models
are parsimonious in the sense that they typically combine distributions that are simple and relatively
well-understood. In the conventional statistics literature, the components of mixture models are
nearly always members of the exponential family of distributions (but this has recently begun to
change; we will talk about this more later in the semester).

A mixture model summarizing the data above might contain two mixture components, each
a Gaussian distribution. The two Gaussians would have different mean vectors and covariance
matrices. The mean of one Gaussian would roughly be the point (3, 3); the mean of the second
Gaussian would be the point (7, 7). Mixture models provide a principled way of combining the
two (uni-modal) Gaussian distributions into a single (multi-modal) distribution that summarizes
the entire data set. As this example illustrates, mixture models are “piecewise estimators” in the
sense that different components are used to summarize different subsets of the data. The subsets
do not, however, have hard boundaries; as discussed below, a data item might simultaneously be a
member of multiple subsets.

As a second example, suppose that we measure the height of a large number of adults. It is quite
likely that the distribution of heights is bimodal. This is because the distribution of heights for
males and females is different. In short, we can model the distribution of heights as the combination
of a distribution for the height of males and a distribution for the height of females.

For convenience, let’s restrict our attention to mixture models that are a mixture of Gaussian
(Normal) distributions. We assume that the environment generates the data in the following way.

For each data item x(t):

1. One of the Gaussian distributions is selected at random from some probability distribution.
Let π(i) denote the probability of selecting the ith Gaussian;
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2. The ith Gaussian is sampled. This sample is the data item x(t). The probability that Gaussian
i generates the value x(t) is given by (assuming a one-dimensional Gaussian distribution):

p(x(t)|i) =
1√
2πσi

e
− 1

2σ2
i

(x(t)−µi)
2

(1)

where µi is the mean of the ith Gaussian and σ2
i is its variance.

Note that the overall probability of the value x(t) is given by:

p(x(t)) =
∑

i

p(i, x(t)) (2)

=
∑

i

p(i) p(x(t)|i) (3)

=
∑

i

π(i) p(x(t)|i) (4)

=
∑

i

π(i)
1√
2πσi

e
− 1

2σ2
i

(x(t)−µi)
2

. (5)

If we regard a mixture model as an instance of a graphical model, then we get the graph shown
in Figure 2. Note that to generate a data item (i.e. a set of values for the visible variables), a hidden
variable is selected at random (e.g., one of the Gaussian distributions is selected), and the selected
hidden variable generates the visible data (e.g., a sample is drawn from the selected Gaussian
distribution; in the figure we’ve assumed that this is a four-dimensional Gaussian distribution).
It will be very important for us to somehow try to estimate which hidden variable (e.g., which
Gaussian distribution) was responsible for generating each data item. Data items generated by
the same hidden variable are said to belong to the same cluster, whereas data items generated by
different hidden variables are said to belong to different clusters.

We have discussed the generation of a particular data item x(t). In general, there will be many
data items: X = {x(t)}T

t=1. The data items are independent and identically distributed so the
probability of getting the entire sample X is:

p(X ) =
∏

t

∑

i

π(i) p(x(t)|i) (6)

=
∏

t

∑

i

π(i)
1√
2πσi

e
− 1

2σ2
i

(x(t)−µi)
2

. (7)

The product arises from the fact that the individual data items are generated independently.

Suppose that we consider data item x(t) and we want to know what Gaussian distribution it
came from. That is, we want to know the probabilities p(i|x(t)). Using Bayes’ rule, we get:

p(i|x(t)) =
π(i) p(x(t)|i)

p(x(t))
(8)
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Figure 1: Data items to be summarized via a mixture model.
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Figure 2: Graphical representation of a mixture model.
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=
π(i) p(x(t)|i)∑
j π(j) p(x(t)|j) (9)

=
π(i) 1√

2πσi
e
− 1

2σ2
i

(x(t)−µi)
2

∑
j π(j) 1√

2πσj
e
− 1

2σ2
j

(x(t)−µj)2
. (10)

Note that this is a powerful tool. We are not told what Gaussian (e.g., category) a particular
data item was sampled from, but we are able to determine the probabilities that it came from the
different distributions. Much of the pattern classification literature is based on this set of equations.
Using Bayesian terminology, we will refer to p(i) = π(i) as the prior probability of Gaussian i, and

to p(i|x(t)) as its posterior probability.

Recall that for maximum likelihood estimation, we are interested in finding the values of the
Gaussian means and variances that maximize the log likelihood of the probability of the data. That
is, we want to adjust our parameters (via gradient ascent for the purposes of this note) so as to
maximize the log likelihood function:

log L = log p(X ) =
∑

t

log
∑

i

π(i) p(x(t)|i). (11)

After some simplifications, the derivatives for the means are:

∂ log L

∂µi
=

∑

t

p(i|x(t))
σ2

i

(x(t) − µi). (12)

That is, the mean of Gaussian i is moved towards the data item x(t), but only in proportion to the
probability that it generated x(t) [the posterior probability p(i|x(t))]. This makes sense, right? A

Gaussian that was very likely to have generated x(t) should change its parameters a lot; a Gaussian
that was very unlikely to have generated x(t) shouldn’t change its parameters much at all. The
derivatives for the variances are:

∂ log L

∂σ2
i

=
∑

t

p(i|x(t))
2σ4

i

[(x(t) − µi)2 − σ2
i ]. (13)

That is, the variance σ2
i is moved towards the sample variance (x(t) − µi)2, but only in proportion

to the probability that Gaussian i generated x(t) [the posterior probability p(i|x(t))].

Note that this framework is not limited to one-dimensional data. In multiple dimensions, each
cluster is a multi-dimensional Gaussian distribution with a mean vector and a covariance matrix.
It is frequently the case that the covariance matrix for the jth cluster is restricted to the form σ2

j I

where I is the identity matrix. Based on what we’ve covered in class so far, you should be able to
understand how to update the mean vector and the covariance matrix σ2

j I. You should also think

about how to update covariance matrices of other forms (such as diagonal matrices in which each
diagonal entry has a different value, non-diagonal matrices, etc.).

4



Also note that this whole game can be played with distributions other than Gaussian. For
example, x(t) could be a Bernoulli variable (e.g., binary variable taking the values 0 and 1, or
head and tail, or true and false, etc.). In this case, we have a mixture of Bernoulli densities. The
probability of the data is:

p(X ) =
∏

t

∑

i

π(i) p(x(t)|i) (14)

=
∏

t

∑

i

π(i) [µi]x
(t)

[1− µi]1−x(t)
(15)

where π(i) is the (prior) probability of selecting the ith Bernoulli distribution and µi is the mean

of the ith Bernoulli distribution.

In general, one can have a mixture model where the mixture components are any probability
model. This can be extremely powerful. For example, we could have a mixture of factor analyzers,
a mixture of hidden Markov models, a mixture of conditional distributions (known as a mixture of
experts), or many other possibilities.

In this note, we’ve considered estimating the parameters of a mixture model via gradient ascent.
It is more common in the literature to estimate these parameters using other algorithms, such as
the Expectation-Maximization (EM) algorithm. However, that is a topic for another day.

Lastly, recall that we’ve only considered mixture models in which the number of mixture com-
ponents is fixed. There are ways of growing the number of mixture components during the course
of training based on the characteristics of the training data. These models, known as Dirichlet
Process Mixture Models, are beyond the scope of this note.
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