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Reference: The material in this note is taken from Rabiner, L. and Juang, B.-H. (1993). Funda-
mentals of Speech Recognition. Englewood Cliffs, NJ: Prentice Hall.

There are three important problems that need to be solved for HMMs to be useful:

1. Given the observation sequence O = (01...07), and a model A = (A, B,7), how do we
efficiently compute P(O|)), the probability of the observation sequence given the model?

2. Given the observation sequence O = (0; ...or), and a model A = (A, B, 7), how do we choose
a corresponding sequence q = (g1 ...qr) that is optimal in some sense (i.e., best “explains”
the observations)?

3. How do we adjust the model parameters A = (A4, B, ) to maximize P(O|\)?

Solution to Problem 1: First enumerate every possible state sequence of length T'. There are
NT such state sequences (where N is the number of possible states). Let’s consider one such state
sequence: q = (q1 - ..qr). The probability of observation sequence O given this state sequence and

model ) is
T

P(O|q, ) H (0clq, N) (1)

where we have assumed conditional independence of the observations. Thus we get
P(Olq, A) = bg, (01)bg, (02) - - - by (07) (2)
where by, (0;) = P(0;|¢i, A). The probability of such a state sequence q is

P(a|\) = 74, 04,4504205 * * * Qqr_1gr (3)

where ag,q; is the probability of a state transition from ¢; to ¢;. Note that the joint probability of

O and q is
P(0,q|A) = P(Olq, A) P(q|}) (4)
and, thus, the marginal probability of O is
P(O])) = » P(Olg,)) P(al)) (5)
all q
= Z Tg1bg1 (01)g,,b45(02) - Qg1 g7 bgy (OT)- (6)
q1-qr
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Figure 1: Schematic illustration of the forward procedure.

Importantly, we have expressed P(O|\) as a mixture model. Unfortunately, this is a very expensive

computation because it includes N7 terms in the summation. We, therefore, need a more efficient
procedure.

This procedure is known as the forward procedure (see Figure 1). Consider the forward variable

Oét(i)

ay(i) = P(0102 -+ - 01, qt = 1| N). (7)
We can solve for a;(i) inductively as follows:
e Initialization: (i) = m;b;(01).
e Induction: ay11(j) = {Zf\il at(i)aij} bj(0441).

e Termination: P(O[\) = SN ar(i).

That is, the forward procedure uses induction (or recursion) to efficiently solve Problem 1.

In a few moments, we’ll also need the backward procedure (see Figure 2). Consider the backward
variable ((1)

ﬂt(l) = P(Ot+10t+2 . 0T|qt = i, )\) (8)

We can solve for (i) inductively:

e Initialization: Bp(i) = 1.

e Induction: B;(i) = Y7001 aijbj(0r41)Ber1(4)-
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Figure 2: Schematic illustration of the backward procedure.

Solution to Problem 2: The solution to this problem depends on your definition of optimality.
Suppose our goal is to choose the states ¢; that are individually most likely at each time ¢. Define

(i) = Plg=i0.) (©)
PO 10)

P(O, g = i|A
_ - ( q ’ ) ‘ (11)

=1 P(0,qt = j|N)

Since P(O, q: = i|\) = a4(7)5:(7), we get

fYt(Z) _ at(l)/ﬁt(l)

~ S w()AG) (1)

Using ~.(7), we solve for the individually most likely state g/ at time .

A possible problem with this solution is that it is locally optimal in the sense that it finds the
g; which is individually most likely at time ¢, but it is not globally optimal in the sense that it
is not guaranteed to find the sequence q = (qig2...qr) that maximizes P(q|O,\). There is an
algorithm, known as the Viterbi algorithm, which efficiently finds this globally optimal sequence.
For the sake of brevity, we will omit it here.

Solution to Problem 3: The solution to this problem is known as the Baum-Welch algorithm.
(It is an instance of an EM algorithm.) Define €(i,7) = P(q: = %, ¢t+1 = j|O, A). We can re-write
it as follows:
P(Qt = i7qt+1 = jv O|)‘)

i) = o (13)
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ay(i)aijb;(0i41)Be+1(J)
P(O[})
a(1)aijbj(oi41)Bev1(4) ‘
ey Sy au(k)arbi(0p41) B (1)

There are several points worth noting:

. N ..
o (i) = > =1 €t(i,7)
. ZtT;f v¢(i) = expected number of transitions from state ¢ in observation O

° ZtT:_ll €t(1,7) = expected number of transitions from state i to state j in observation O

Using these quantities, we can write the parameter re-estimation equations. The initial state
probabilities are

i = 71(4). (16)

The state transition probabilities are
_ZS el
Qij = Ty (17)
>oi—1 Ve(d)

Here, the numerator is the expected number of transitions from state ¢ to state j, and the denom-
inator is the expected number of transitions from state i. The emission probabilities are

Z?:l 0= %f(])
bi(k) = :
5(8) i1 (5)

(18)

Here the numerator is the expected number of times in state j and observing symbol v, and the
denominator is the expected number of times in state j. Note that it is necessary to iterate through
these equations several times until convergence.



