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There are three important problems that need to be solved for HMMs to be useful:

1. Given the observation sequence O = (o1 . . . oT ), and a model λ = (A,B, π), how do we
efficiently compute P (O|λ), the probability of the observation sequence given the model?

2. Given the observation sequence O = (o1 . . . oT ), and a model λ = (A,B, π), how do we choose
a corresponding sequence q = (q1 . . . qT ) that is optimal in some sense (i.e., best “explains”
the observations)?

3. How do we adjust the model parameters λ = (A, B, π) to maximize P (O|λ)?

Solution to Problem 1: First enumerate every possible state sequence of length T . There are
NT such state sequences (where N is the number of possible states). Let’s consider one such state
sequence: q = (q1 . . . qT ). The probability of observation sequence O given this state sequence and
model λ is

P (O|q, λ) =
T∏

t=1

P (ot|qt, λ) (1)

where we have assumed conditional independence of the observations. Thus we get

P (O|q, λ) = bq1(o1)bq2(o2) · · · bqT (oT ) (2)

where bqi(oi) = P (oi|qi, λ). The probability of such a state sequence q is

P (q|λ) = πq1aq1q2aq2q3 · · · aqT−1qT (3)

where aqiqj is the probability of a state transition from qi to qj . Note that the joint probability of
O and q is

P (O,q|λ) = P (O|q, λ) P (q|λ) (4)

and, thus, the marginal probability of O is

P (O|λ) =
∑

all q

P (O|q, λ) P (q|λ) (5)

=
∑

q1...qT

πq1bq1(o1)aq1q2bq2(o2) · · · aqT−1qT bqT (oT ). (6)
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Figure 1: Schematic illustration of the forward procedure.

Importantly, we have expressed P (O|λ) as a mixture model. Unfortunately, this is a very expensive

computation because it includes NT terms in the summation. We, therefore, need a more efficient
procedure.

This procedure is known as the forward procedure (see Figure 1). Consider the forward variable

αt(i)
αt(i) = P (o1o2 · · · ot, qt = i|λ). (7)

We can solve for αt(i) inductively as follows:

• Initialization: α1(i) = πibi(o1).

• Induction: αt+1(j) =
[∑N

i=1 αt(i)aij

]
bj(ot+1).

• Termination: P (O|λ) =
∑N

i=1 αT (i).

That is, the forward procedure uses induction (or recursion) to efficiently solve Problem 1.

In a few moments, we’ll also need the backward procedure (see Figure 2). Consider the backward

variable βt(i)
βt(i) = P (ot+1ot+2 . . . oT |qt = i, λ). (8)

We can solve for βt(i) inductively:

• Initialization: βT (i) = 1.

• Induction: βt(i) =
∑N

j=1 aijbj(ot+1)βt+1(j).
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Figure 2: Schematic illustration of the backward procedure.

Solution to Problem 2: The solution to this problem depends on your definition of optimality.
Suppose our goal is to choose the states q∗t that are individually most likely at each time t. Define

γt(i) = P (qt = i|O, λ) (9)

=
P (O, qt = i|λ)

P (O|λ)
(10)

=
P (O, qt = i|λ)∑N

j=1 P (O, qt = j|λ)
. (11)

Since P (O, qt = i|λ) = αt(i)βt(i), we get

γt(i) =
αt(i)βt(i)∑N

j=1 αt(j)βt(j)
. (12)

Using γt(i), we solve for the individually most likely state q∗t at time t.

A possible problem with this solution is that it is locally optimal in the sense that it finds the
q∗t which is individually most likely at time t, but it is not globally optimal in the sense that it
is not guaranteed to find the sequence q = (q1q2 . . . qT ) that maximizes P (q|O, λ). There is an
algorithm, known as the Viterbi algorithm, which efficiently finds this globally optimal sequence.
For the sake of brevity, we will omit it here.

Solution to Problem 3: The solution to this problem is known as the Baum-Welch algorithm.
(It is an instance of an EM algorithm.) Define εt(i, j) = P (qt = i, qt+1 = j|O, λ). We can re-write
it as follows:

εt(i, j) =
P (qt = i, qt+1 = j,O|λ)

P (O|λ)
(13)
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=
αt(i)aijbj(ot+1)βt+1(j)

P (O|λ)
(14)

=
αt(i)aijbj(ot+1)βt+1(j)∑N

k=1

∑N
l=1 αt(k)aklbl(ot+1)βt+1(l)

. (15)

There are several points worth noting:

• γt(i) =
∑N

j=1 εt(i, j)

• ∑T−1
t=1 γt(i) = expected number of transitions from state i in observation O

• ∑T−1
t=1 εt(i, j) = expected number of transitions from state i to state j in observation O

Using these quantities, we can write the parameter re-estimation equations. The initial state
probabilities are

πi = γ1(i). (16)

The state transition probabilities are

aij =
∑T−1

t=1 εt(i, j)∑T−1
t=1 γt(i)

. (17)

Here, the numerator is the expected number of transitions from state i to state j, and the denom-
inator is the expected number of transitions from state i. The emission probabilities are

bj(k) =
∑T

t=1, ot=vk
γt(j)∑T

t=1 γt(j)
(18)

Here the numerator is the expected number of times in state j and observing symbol vk, and the
denominator is the expected number of times in state j. Note that it is necessary to iterate through
these equations several times until convergence.
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