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We seek a model that ‘explains’ the observed associations between variables. Suppose that
p variables x = [x1, . . . , xp]T have been observed on each of n sample individuals. Also suppose
that the variables are continuous, and that associations between them are therefore measured by
correlation coefficients. Let R denote the matrix of correlation coefficients. Our objective is an
adequate ‘explanation’ of all the entries of R. It is evident that any satisfactory explanation
must draw on information from outside this set of correlation values, as otherwise we will become
enmeshed in circular arguments. Let us therefore suppose that the relevant extra information
resides in a further q variables z = [z1, . . . , zq]T that could be measured on each sample member
(but have not been measured).

To see how extra variables can explain the observed correlations, recall that a correlation rij

between two variables xi and xj could arise as a result of their mutual association with an extraneous
variable zk. The variation in zk values over the sample, and the associations between zk and each
of xi and xj , induces an association between xi and xj . The partial correlation rij|k measures the
association between xi and xj when the value of zk is held fixed, and is therefore the ‘residual’
correlation between xi and xj after removal of the (linear) effect of zk on each. If this partial
correlation is close to zero (or more precisely if the null hypothesis of zero population partial
correlation is tenable), then we can say that zk has ‘explained’ the correlation rij between xi and
xj . If rij|k is not close to zero, then there still exists some association between xi and xj that is
unexplained, and we need to consider a further variable zl to account for this remaining correlation.
If the partial correlation rij|kl is not significantly different from zero, then zk and zl jointly explain
the correlation rij . Otherwise we consider a third variable zm, and so on. A satisfactory explanation

of all the entries in R will thus be obtained when we find a set of variables z = [z1, . . . , zq]T such
that the partial correlation between any two variables xi and xj , on fixing the values of z, is not
significantly different from zero. The most parsimonious explanation is achieved when q is as small
as possible.

The converse of the above argument is that if the variables z1, . . . , zq are to provide a complete
explanation of the entries of R, then the partial correlation between any two elements of x for a
fixed value of z must be compatible with a population value of zero. This means that if only those
individuals with specified values of z were to be sampled, then no association would be detectable
between any two elements of x. In other words, xi and xj are conditionally independent given the
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values of z1, . . . , zq, for all i and j. This property of local independence is a necessary requirement
for a set of variables z to provide an explanation for the entries R.

As it stands, the above discussion is an academic one because we don’t know anything about the
z1, . . . , zq variables (we don’t know what they are, we don’t know how many of them there are, and
we don’t know their values). Our data simply consists of n observations on each of the p variables
x1, . . . , xp. The great insight, however, comes from assuming that z1, . . . , zq are unobserved random
variables. Therefore, it may be possible to estimate their moments (e.g., means, variances) through
statistical analysis. Since the zi (i = 1, . . . , q) are unobservable, they are termed latent variables.
Sometimes they are also known as factors.

Now let’s consider the factor analysis model. The first step is an appropriate model, which in
this case is any model that satisfies the requirement of local independence outlined above. The
factor analysis model is the simplest model to satisfy this requirement. We assume that x is a
linear function of z:

x1 = µ1 + γ11z1 + . . . + γ1qzq + e1 (1)

x2 = µ2 + γ21z1 + . . . + γ2qzq + e2

...
xp = µp + γp1z1 + . . . + γpqzq + ep

where the µi and γij are constants, while the zi and ei are random variables. The minimal set
of assumptions about these random variables (to ensure that the local independence property is
satisfied) is that the ei are uncorrelated with each other and with the zi. It is then evident that if
the values of the zi are specified we can write xi = vi + ei (i = 1, . . . , p) where the vi are constants,
so that corr(xi, xj) = 0 for all i, j.

It’ll be useful if we use vector notation:

x = µ + Γz + e. (2)

It is worth re-writing this as
x− µ = Γz + e. (3)

Note that the entire right-hand side of this equation consists of conceptual entities (i.e. unobservable
variables). In order to make any progress with this equation, we need to make some assumptions. In
the factor analysis model, we assume that z and e are random variables with Normal distributions.
In regard to z, we assume that its mean is the zero vector and that its covariance matrix is
the identity matrix I. In regard to e, we assume that its mean is the zero vector and that its
covariance matrix, denoted Ψ, is a diagonal matrix whose diagonal entries are ψ2

1, . . . , ψ
2
p. Given

these assumptions, it is easy to show that x is Normally distributed with mean µ and covariance
matrix ΓΓT + Ψ.

As an aside, let’s show this:

E[(x− µ)(x− µ)T ] = E[(µ + Γz + e− µ)(µ + Γz + e− µ)T ]
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= E[(Γz + e)(Γz + e)T ]

= E[ΓzzTΓT ] + E[ΓzeT ] + E[ezTΓT ] + E[eeT ]

= ΓE[zzT ]Γ + ΓE[zeT ] + E[ezT ]Γ + E[eeT ]

= ΓIΓ + Γ0 + 0Γ + Ψ

= ΓΓT + Ψ.

As a second aside, let’s also examine the covariance between x and z:

E[(x− µ)zT ] = E[(µ + Γz + e− µ)zT ]

= E[(Γz + e)zT ]

= ΓE[zzT ] + E[ezT ]

= Γ.

Using these asides, the joint distribution of data x and factors z is

P

([
x
z

])
= N

([
µ
0

]
,

[
ΓΓT + Ψ Γ

ΓT I

])
. (4)

Consequently, we can compute P (x|z) or P (z|x) (see the appendix at the end of this note for how
to compute conditional distributions from a joint distribution that is Normal). For example, the

probability of x(t) given z(t) (i.e. x and z for data item t) is the Normal distribution:

(2π)p/2|Ψ|−1/2 exp{−1
2
(x(t) − µ− Γz(t))T Ψ−1(x(t) − µ− Γz(t))}. (5)

The joint probability over all data items x(t), t = 1, . . . , T , is the likelihood function which is
maximized when one estimates the values of the free parameters of the model (these parameters
are the matrix of linear coefficients Γ and the covariance matrix Ψ). For reasons not described here,
it can be tricky to find parameter values that maximize this function and so specialized techniques
are often used. One may also be interested in the probability of z(t) given x(t). This is given by a
Normal distribution whose mean is

ΓT (ΓΓT + Ψ)−1(x(t) − µ). (6)

To make this discussion concrete, let’s consider an example, namely intelligence testing. Let
x1, . . . , xp be the scores obtainable in a battery of tests (e.g., arithmetic, algebra, history, reading,
and comprehension), so that the observations for the ith individual in a sample would be denoted

by xi = [xi1, . . . , xip]T where i = 1, . . . , n. The different tests exhibit associations as given by the
sample correlation matrix R. To explain the associations, the factor analysis model postulates that
each test score is made up of contributions from a number q of common factors (the zi), together
with a ‘residual’ specific to that test (the ei). In the example under consideration, common factors
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relevant to the given tests might be ‘intelligence’ (z1), ‘numerical ability’ (z2), ‘verbal ability’ (z3),
and ‘memory’ (z4). Each test requires a combination of these skills, but clearly each skill will be
more important for some tests than for others. For example, we would expect arithmetic to have
heavier contributions from z1 and z2 than from z3 and z4, while history would not require z2 at all
but would rely about equally on the other three qualities. The constant γij above expresses the
importance of factor zj in test xi, and is usually known as the loading of factor j on test i. Each
individual in the sample is assumed to possess a value for each of these factors (the set of factor
scores for that individual), but these values are unobservable.

While the reasonableness of such arguments may not be in doubt, it nevertheless remains true
that the factor analysis model seems a very flimsy basis for which to attempt an explanation of a
system, because of the lack of observable quantities in it. From the available data (the n vectors
xi), we need to estimate:

• The number q of common factors (clearly we are interested in the smallest value of q that
yields an adequate fit to the data).

• The factor loadings γij . Since the factors are unobservable, the factor loadings provide the
only means of ‘labeling’ each factor. By identifying which factors have high loading for each
variable xi, we can perhaps attach meanings to the factors. Thus high loadings on factor 1
for all tests in the example above would identify z1 as ‘general intelligence’; high loadings
on factor 2 for x1 and x2 (arithmetic and algebra) but low loadings for the other xi would
suggest that z2 was ‘numerical ability’.

• The specific variances ψ2
1, . . . , ψ

2
p. These quantities determine how much of the variability of

each variable is not attributable to the common factors.

• The factor scores zi = [zi1, . . . , ziq]T which provide a ranking or scaling of the sample indi-
viduals with respect to each identified factor.

Finally, it is worth comparing and contrasting factor analysis models with principal component
models. Recall that in PCA we seek a new set of variables y1, . . . , yp as linear combinations of
the observed (mean-centered) variables x1, . . . , xp in such a way as to maximize successively the

variance of the yi. If λi is the ith largest eigenvalue of the covariance matrix of x = [x1, . . . , xp]T ,

and αi = [αi1, . . . , αip]T is its corresponding eigenvector, then the principal components are given
by

y1 = α11x1 + · · ·+ α1pxp (7)

...
yp = αp1x1 + · · ·+ αppxp

and var(yi) = λi (i = 1, . . . , p). Since the matrix (αij) is orthogonal, we can invert this transfor-
mation to give
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x1 = α11y1 + · · ·+ αp1yp (8)

...
xp = α1py1 + · · ·+ αppyp

Consequently, if the p − q components with smallest variance are treated as ‘noise’ and set equal
to a ‘residual’ ηi, then we obtain

x1 = α11y1 + · · ·+ α1qyq + η1 (9)

...
xp = α1py1 + · · ·+ αqpyq + ηp

or equivalently

x1 = (α11

√
λ1)

y1√
λ1

+ · · ·+ (αq1

√
λq)

yq√
λq

+ η1 (10)

...

xp = (α1p

√
λ1)

y1√
λ1

+ · · ·+ (αqp

√
λq)

yq√
λq

+ ηp.

If we write γij = (αji
√

λj) and zi = yi√
λi

, then we have

x1 = γ11z1 + · · ·+ γ1qzq + η1 (11)

...
xp = γp1z1 + · · ·+ γpqzq + ηp.

Putting back the means µi of the xi into the right-hand side of these equations, we recover a set of
equations exactly of the form of the factor analysis model. Moreover, since the yi are uncorrelated
and have variances λi, the zi are also uncorrelated and each has variance 1. Hence the standardized
components obey the same assumptions as do the factors in a factor analysis model. For this reason,
PCA and FA have been inextricably linked and much confused as techniques over the years. It is
therefore important to appreciate precisely what the aims of the two techniques are.

The vital distinction between them is that principal components are the optimal entities for
describing or explaining the variances in a multivariate system, while factors are appropriate when
trying to explain the covariances in the system. Note that one important difference between PCA
and FA has not yet been highlighted. This is that the ei of FA are not the same as the ηi of PCA.
The ei are assumed to be uncorrelated with the zi and with each other. Now consider the ηi of
PCA. From their definition we can write

η1 = αq+1,1yq+1 + · · ·+ αp1yp (12)

...
ηp = αq+1,pyq+1 + · · ·+ αppyp.
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Since the yi are all mutually uncorrelated, then the ηi are indeed uncorrelated with the zi. However,
since the same yj occur in different ηi, the ηi are not mutually uncorrelated. Thus the zi as derived
from PCA do not explain all the correlation structure in x. Hence PCA and FA are not the same
(!!!).

Appendix

In this appendix, we present a fact found in many multivariate statistics books. Given a joint
distribution over several variables that is Normal, we are interested in computing a conditional
distribution.

If we partition the set of variables into two subsets, labeled x1 and x2, then we can partition
the mean vector and covariance matrix in the obvious way:

p

([
x1

x2

])
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
. (13)

Let x2 = a. The conditional distribution of x1 given that x2 = a is as follows:

p(x1|x2 = a) ∼ N [µ1 + Σ12Σ−1
22 (a− µ2), Σ11 − Σ12Σ−1

22 Σ21]. (14)

In the main body of this note, we used this equation to compute the conditional distributions p(x|z)
and p(z|x).
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