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Introduction: A Dirichlet process (DP) is a distribution over probability distributions. We generally
think of distributions as defined over numbers of some sort (real numbers, non-negative integers etc.), so
at first it may seem a little exotic to talk about distributions over distributions. If you feel that way at
this point, one obvious but very reassuring fact that we would like to point out is that probability theory
still applies to these objects, however exotic they may seem initially. So, as we will see shortly, it is quite
possible to gain considerable insight into the properties of these objects without having a clear intuition
as to what they “look like”.

Suppose that G is a probability distribution over a measurable space Θ (if this is too technical, you
can think of G as assigning real numbers between 0 and 1 –probabilities– to subsets of Θ). Now, G
is a probability distribution over Θ and a DP is a distribution over all such distributions. A DP is
parametrized by a concentration parameter α and a base measure or base distribution H (more on these
later). It is barely informative to just say that something is a distribution over something else (compare:
a normal distribution is a distribution over real numbers). We would like to know the properties of
that distribution. So, what exactly does it mean to say that G is distributed according to a DP with
parameters α, H, or more concisely: G ∼ DP(α,H)? It means the following:

(G(T1), G(T2), . . . , G(TK)) ∼ Dirichlet(αH(T1), αH(T2), . . . , αH(TK)) (1)

for any finite partition (T1, T2, . . . , TK) of Θ. Or in English, the probabilities that G assigns to any finite
partition of Θ follow a Dirichlet distribution (not to be confused with a Dirichlet process) with parameters
αH(T1), αH(T2), . . . , αH(TK). This implicit definition might be too abstract (I, for one, do not claim to
get a clear picture of what a DP looks like from this definition), but we will give more constructive (and
hopefully more intuitive) characterizations of a DP shortly. For now, as alluded to in the first paragraph,
here are some important properties of a DP that you can derive using basic probability theory without
having the slightest idea what a DP looks like. These properties follow straightforwardly from Equation 1
and the properties of the Dirichlet distribution and it is very instructive to prove them even if you do not
have a solid intuition at the moment as to what a DP looks like:

Mean: The mean of a DP is its base measure: E[G] = H or equivalently E[G(T )] = H(T ) for any T ⊂ Θ.
On average, then, distributions drawn from a DP look like H.
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Posterior distribution: If G ∼ DP(α,H) and θ1, . . . , θN ∼ G, then the posterior over G is also a DP:

G|θ1, . . . , θN ∼ DP(α+N,
1

α+N
(αH(θ) +

N∑
i=1

δ(θ = θi))) (2)

where δ(θ = θi) is a delta function centered at θi. In other words, DP is the conjugate prior for arbitrary
distributions over a measurable space Θ.

Deriving the following properties requires a little more sophisticated mathematics (see Sudderth (2006)
and Görür (2007) and the references cited therein). But they all rely on constructive ideas and there are
metaphors or physical analogies associated with each of them, which will hopefully help you build some
intuitions about DPs.

Posterior predictive distribution (Pólya urn scheme): What is the posterior predictive distribution
of a DP? In other words, if G ∼ DP(α,H) and θ1, . . . , θN ∼ G, what is the posterior predictive distribution
for a new item: p(θN+1|θ1, . . . , θN ) =

∫
p(θN+1|G)p(G|θ1, . . . , θN )dG?

To answer this question, imagine that you generate an infinite sequence {θi}∞i=1 (with θi ∈ Θ) according
to the following procedure:

θ1 ∼ H (3)

θN+1|θ1, . . . , θN ∼ GN (θN+1) =
αH(θN+1) +

∑N
i=1 δ(θN+1 = θi)

α+N
(4)

The physical analogy associated with this construction is as follows. Suppose that you are drawing colored
balls from an urn, called urn G (hence the name “urn scheme”). θi represents the color of the i-th ball
you drew from the urn. For each ball you draw from the urn, you replace that ball and add another ball
with the same color to the urn. Note that this induces a “rich gets richer” property on the frequencies of
colors inside the urn: as you draw more and more balls with a certain color, it becomes more and more
likely to draw a ball with that color at the following iterations. To add diversity, you also occasionally
draw a ball from a different urn, H, replace it and add a ball of the same color to the original urn G.

What does this all have to do with the posterior predictive distribution of a DP? It turns out that if
you continue the process described in Equations 3-4 ad infinitum, GN converges to a random discrete
distribution G which is itself distributed according to DP(α,H):

lim
N→∞

GN → G ∼ DP(α,H) (5)

Furthermore, the samples {θi}Ni=1 constitute samples from the random limit distribution G and Equa-
tion 4 gives the posterior predictive distribution for a new observation θN+1: p(θN+1|θ1, . . . , θN ) =∫
p(θN+1|G)p(G|θ1, . . . , θN )dG. Thus, this construction gives you the posterior predictive distribution

of a DP!

Chinese restaurant process (CRP): The Pólya urn scheme makes it clear that a DP imposes a
clustering structure on the observations θi: there is a strictly positive probability that two balls drawn
from the urn will have the same color, hence the observations, or the balls in the Pólya urn scheme, can
be grouped by their colors. CRP makes this clustering structure explicit. More specifically, let us index
distinct colors in the Pólya urn scheme by integers. Let ci denote the color index of the i-th ball drawn
from the urn. Note that if two balls i and j have the same color, then ci = cj . Also note that ci is different
from θi. θi ∈ Θ is the color of the ball, whereas ci is the integer index of that color. Suppose that you
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drew N balls from the urn and so far have encountered K distinct colors. It follows from Equation 4 that:

p(cN+1|c1, . . . , cN ) =
α

α+N
δ(cN+1 = K + 1) +

K∑
k=1

nk
α+N

δ(cN+1 = k) (6)

where nk is the number of balls with color index k (make sure that you understand how Equation 6 follows
from Equation 4). So, the color of the next ball will either be the same as one of the existing colors (with
probability proportional to the number of balls of that color) or a new color unseen among the first N
balls (with probability proportional to α). Therefore, CRP is a straightforward consequence of the Pólya
urn scheme. But the statisticians had to come up with an entirely new metaphor for it! According to
this metaphor, as the name suggests, you are to imagine a Chinese restaurant with an infinite number of
tables each with infinite seating capacity. When the customer N + 1 arrives at the restaurant, she either
sits at one of the K occupied tables with probability proportional to the number of customers sitting at
that table, nk, or with probability proportional to α she sits at a new, presently unoccupied table (table
K+1). The importance of this process is that it turns out that CRP provides a very useful representation
when doing inference in Dirichlet process mixture models (DPMM), i.e. mixture models with DP priors
on mixture components (more on DPMMs later).

Stick-breaking construction: We still do not have a clear idea as to what a random draw from a DP
looks like. We will have a very clear idea once we learn about the stick-breaking construction. So, suppose
that you generate an infinite sequence of “weights” {πk}∞k=1 according to the following procedure:

βk ∼ Beta(1, α) (7)

πk = βk

k−1∏
l=1

(1− βl) (8)

An infinite sequence of weights π = {πk}∞k=1 thus generated is said to be distributed according to a GEM
(Griffiths-Engen-McCloskey) process with concentration parameter α (π ∼ GEM(α)). Now consider the
following discrete random probability distribution:

G(θ) =

∞∑
k=1

πkδ(θ = ζk) where ζk ∼ H (9)

It can be shown that G ∼ DP(α,H). Furthermore, all draws from a DP can be expressed as in Equation 9.
The physical analogy associated with Equations 7-8 is the successive breaking of a stick of unit length.
You first break a random proportion β1 of the stick. The length of this piece gives you the first weight,
π1. Then, you break a random proportion β2 of the remaining stick. The length of this second piece
gives you the second weight, π2 and so on. Note that as k gets larger and larger, the stick lengths, or the
weights, will tend to get smaller and smaller. The concentration parameter α determines the distribution
of the stick lengths. For small α, only the first few sticks will have significant lengths, the remaining sticks
having very small lengths. For large α, on the other hand, the stick lengths will tend to be more uniform.
This can be seen by noting that E[βk] = 1/(1 + α), hence for small α, the random breaking proportions
βk will tend to be large and the entire length of the stick will be “expended” very rapidly; whereas for
large α, the proportions will tend to be smaller and it will take longer to expend the entire length of the
stick.

We now know what draws from a DP “look like”: they all look like the infinite discrete distribution in
Equation 9. In fact, we can even picture them. Figure 1 shows random draws from DPs with different
concentration parameters α and base measures H. The base measure H determines where the “atoms”
ηk will tend to be located and, as discussed in the previous paragraph, α controls the weight distribution
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Figure 1: Random draws from stick breaking processes with different parameters. (A) The base measure,
H, is a normal distribution with zero mean and standard deviation 50. (B) The base measure, H, is a
normal distribution with zero mean and standard deviation 50. The base measure is shown by the solid
black lines in each plot. Different columns correspond to different concentration parameters. Note that
the collection of stems in each plot constitutes a single random draw, G, from a DP with parameters α
and H.

of the atoms, with smaller α leading to sparser weight distributions.

Dirichlet process mixture models: Where do we use DPs? Are they purely a theoretical curiosity or
do they have any practical applications? The main application of DPs is within the context of mixture
models. In this context, a DP-distributed discrete random measure is used as a prior over the parameters
of mixture components in a mixture model. The resulting model is called a Dirichlet process mixture
model (DPMM). Let us first describe the DPMM mathematically:

G ∼ DP (α,H) (10)

θi|G ∼ G (11)

xi|θi ∼ F (θi) (12)

where xi are the observable variables or data that we want to model. θi are the parameters of the mixture
component that xi belongs to and F represents the distribution of mixture components (e.g. Gaussian
in a mixture of Gaussians). θi can be a single parameter, such as the mean parameter of the Gaussian
components in a mixture of Gaussians or a vector of multiple parameters, such as the mean and precision
of the Gaussian components in a mixture of Gaussians. Note that when two data points xi and xj belong
to the same component, their component parameters will be identical, i.e. θi = θj . Figure 2 shows a
graphical representation of the DPMM together with an illustration of the generative process defining the
model. In the example show in this figure, θ = (µ, τ) is a vector representing the mean and precision of
Gaussian components. We use a uniform base measure over µ and a gamma base measure over τ . H is
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Figure 2: This figure is adapted from Sudderth (2006). Both the DPMM and BFMM have a common
structure represented by the graphical model shown on the left. This graphical model uses the plate
notation, where the nodes inside the plate are meant to be replicated N times. The shaded node represents
the observable variables, i.e. the data points xi. The other variables are latent or unobservable. The
remaining plots illustrate the generative processes defining the two models. Each row illustrates the
generation of variables at the corresponding level in the graphical model on the left. The only difference
between the two models is in the variable G. For the DPMM, G is a discrete distribution with an infinite
number of “atoms”; for the BFMM with K components, it is a discrete distribution with K atoms. In
the example shown here, the DPMM uses three components to generate the four data points represented
by xis, the BFMM uses 2 components. θi = (µi, τi) represents the component parameters, i.e. the mean
and precision parameters of Gaussian components, for data point xi. The distributions at the bottom
row illustrate the Gaussian components from which the data points xi were drawn.

then simply a product of these two base measures. G is an infinite discrete distribution over such (µ, τ)
vectors, as in Equation 9. For each data point i, we draw an atom θi = (µi, τi) from G (which may be
identical for different data points due to the discreteness of G) and then generate xi by a random draw
from a Gaussian distribution with mean µi and precision τi. The DPMM is sometimes called the infinite
mixture model. This is due to the fact that the DPMM can be shown to be mathematically equivalent
to a finite mixture model when the number of components goes to infinity. It is very instructive to think
about exactly what distinguishes a DPMM from a finite mixture model. It is sometimes claimed that the
difference between a DPMM and a finite mixture model is that the former computes a whole posterior
distribution over the number of components in the dataset, whereas the latter assumes a fixed number
of components and hence does not compute a distribution over them. This claim is true only if one
uses a non-Bayesian method (e.g. expectation-maximization or EM) for inference in the finite mixture
model. However, a fully Bayesian finite mixture model (BFMM), where inference over all the variables
in the model is treated in a Bayesian way, also computes a posterior distribution over the number of
components in the given dataset, rather than assuming a single, fixed number of components. The real
difference between a DPMM and a BFMM rather lies in the upper bound on the number of components
that they use. Whereas the DPMM assumes no upper bound on this number, a BFMM sets a strict, finite
upper bound K on the number of components. In terms of the Equations 10-12 describing the DPMM,
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Figure 3: DPMM applied to a two-dimensional dataset. The lower-right plot shows the posterior distri-
bution over the number of components inferred by the DPMM. The remaining plots show the components
(represented by the contours) and the color-coded assignment of data points to the components at different
iterations of an MCMC sampling algorithm used for inference in the DPMM.

the only difference between the DPMM and a BFMM comes from the discrete distribution G over the
component parameters (compare the middle and the right columns in Figure 2). In the DPMM, G is
distributed according to a Dirichlet process with base measure H and concentration parameter α and can
be expressed as a weighted sum of an infinite number of discrete atoms (Equation 9). In a finite mixture
model with K components, on the other hand, G is a weighted sum of a finite number of atoms only
(reflecting the assumption that the data were generated by a finite number of components):

G(θ) =
K∑
k=1

πkδ(θ = ζk) (13)

As in the DPMM, the atoms ζk are drawn independently from a base measure H. The weights π, on the
other hand, are drawn from a symmetric Dirichlet distribution with concentration parameters α/K:

π ∼ Dirichlet(α/K, . . . , α/K) (14)

whereas the weights π in the DPMM are distributed, as you will remember, according to a GEM(α)
process.

Figure 3 shows the application of the DPMM to a two-dimensional dataset. Although, we have not
addressed the problem of inference for the DPMM in this note, inference is generally performed via
Markov chain Monte Carlo (MCMC) sampling algorithms (although there are quite efficient variational
inference algorithms for the DPMM as well). For the example shown in Figure 3, we have used an
efficient Gibbs sampling algorithm for performing inference (see Sudderth (2006) or Görür (2007) for
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details). The first five plots in this figure show the components and the color-coded assignment of data
points to the components at different iterations of the Gibbs sampling algorithm. The lower-right plot
shows the posterior distribution over the number of components.
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