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A few days prior to the 2004 presidential election, a poll was taken in Ohio. Of 1067 individuals
interviewed, 556 individuals said they would vote for John Kerry and 511 individuals said they
would vote for George W. Bush. Let K be the proportion of Kerry voters in Ohio. We want to
know the probability that K > 0.5, meaning the probability that more Ohio voters will vote for
Kerry than Bush.

Using Bayes’ rule:
p(K|data) ∝ p(data|K) p(K) (1)

where p(data|K) is the likelihood of the poll data given K and p(K) is the prior probability
distribution for K. Because the poll data is binary (1 = Kerry; 0 = Bush), the likelihood can be
characterized as a binomial distribution with x = 556 “successes” (votes for Kerry) and n−x = 511
“failures” (votes for Bush), with n = 1067 total votes. Thus

p(data|K) ∝ K556 (1−K)511. (2)

What remains is to specify the prior distribution p(K).

An appropriate prior distribution for an unknown proportion such as K is a beta distribution.
The probability density function (pdf) of the beta distribution is:

p(K|α, β) =
Γ(α + β)
Γ(α)Γ(β)

Kα−1 (1−K)β−1 (3)

where Γ(a) is the gamma function applied to a and 0 < K < 1. (The gamma function is the
generalization of the factorial to nonintegers. For integers, Γ(a) = (a−1)!. For nonintegers, Γ(a) =∫∞
0 xa−1e−xdx. Most software packages will compute this function, but it is often unnecessary in

practice, because it tends to be part of the normalizing constant in most problems.) The parameters
α and β can be thought of as the prior “successes” and “failures”, respectively. This distribution
looks similar to the binomial distribution. The key difference is that, whereas the random variable
is x and the key parameter is K in the binomial distribution, the random variable is K and the
parameters are α and β in the beta distribution.

How do we choose values for α and β? For the purposes of this example, three previous polls
had been conducted. If we combine the results of these polls, then 942 individuals said they would
vote for Kerry and 1008 individuals said they would vote for Bush. Thus, we set α = 942 and
β = 1008.
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Figure 1: The beta distribution for three different values of α and β. See text for explanation.

After combining this prior with the likelihood, we get

p(K|α, β, data) ∝ K556(1−K)511K941(1−K)1007 = K1497(1−K)1518. (4)

Importantly, this posterior distribution is also a beta density, with α = 1498 and β = 1519.
This highlights the important concept of “conjugacy” in Bayesian statistics. When the prior and
likelihood are of such a form that the posterior distribution follows the same form as the prior, the
prior and likelihood are said to be conjugate.

To illustrate some of these ideas, Figure 1 plots the beta distribution for (α = 1, β = 1),
(α = 5, β = 5), and (α = 50, β = 50). If we think of α and β as the number of successes and
failures, the variance of the distribution decreases as the number of data items increases.

Figure 2 shows the posterior distribution for K in a scenario in which a coin is flipped and lands
either heads-up or tails-up. (The horizontal axis shows a value, and the vertical axis shows the
probability assigned to that value by the posterior distribution. Actually, the probabilities have
been linearly scaled so that the largest probability is always equal to 1.) The prior distribution
is a beta distribution with α = 5 and β = 5 (4 prior heads, 4 prior tails). The different graphs
correspond to different numbers of trials (where a trial is a coin flip). Note that the upper left
graph (0 coin flips) shows the prior distribution. As the number of trials increases, the variance of
the posterior distribution decreases.

Figure 3 is identical to Figure 2 except that the prior distribution is a beta distribution with
α = 20 and β = 5. With small sample sizes, the mean of the posterior distribution is a compromise
between the mean of the prior distribution and the mean of the data. As sample sizes increase,
the mean of the posterior distribution is closer to the mean of the data, and the variance of the
posterior distribution shrinks.
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Figure 2: The posterior distribution for K. See text for explanation.
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Figure 3: The posterior distribution for K. See text for explanation.
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