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1. What is reinforcement learning?

Simply put, reinforcement learning (RL) is a term used to indicate a large family of dierent algorithms RL
that all share two key properties. First, the objective of RL is to learn appropriate behavior through trial-
and-error experience in a task. Second, in RL, the feedback available to the learning agent is restricted to
a reward signal that indicates how well the agent is behaving, but does not indicate specifically how the reward signal

agent could improve its behavior. For example, consider writing an essay for a course and receiving a
numerical score in the range 0–100. If your score is less-than-perfect, you know that your performance
could be improved upon, but the feedback itself doesn’t indicate specifically how your essay should have
been dierent. In more complex cases, optimal behavior will generally require numerous separate de-
cisions, and there may be delayed or missing reward signals. For example, one can imagine trying to
teach a computer to play checkers by providing a positive reward signal every time it wins a game, and
a negative (penalty) signal every time it loses. In this case, each individual action (moving a piece) is
not rewarded, and the only reward signal is provided at the end of a game. Learning how to improve
behavior given this limited type of feedback is both the goal and challenge facing all RL algorithms.

2. Formal elements of reinforcement learning

More formally, the important elements of RL can be described using the framework of Markov decision
processes (MDPs). An MDP is described by four components:

Markov
decision
process

• 𝒮 : The set of distinct states, 𝑠, that describe the environment. In the game of checkers, the state
could be defined as the current configuration of pieces on the board.

• 𝒜 : The set of actions, 𝑎, available to the agent in each state.

• 𝒫 𝑎
𝑠,𝑠′ = P(𝑠ດ ∣ 𝑠, 𝑎): The transition probability of moving from state 𝑠 to 𝑠ດ, given that action 𝑎 is

selected.

• ℛ𝑎
𝑠,𝑠′ = E [𝑟 ∣ 𝑠, 𝑎]: The expected immediate reward associated with taking action 𝑎 in state 𝑠 and

transitioning to state 𝑠ດ.
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With these four components defined, the goal of RL is to learn an optimal behavioral policy func-
policytion, 𝜋(𝑠, 𝑎), which specifies the probability of selecting action 𝑎 in state 𝑠, for all states and actions. An

optimal policy is one that maximizes the expected total return. In one-step decision tasks, the return is
returnsimply the immediate reward signal. In more complex tasks, the return is defined as the sum of indi-

vidual reward signals obtained over the course of behavior. In some cases, one might value immediate
rewards more than rewards far in the future. To incorporate this possibility, one can define a discounted
return, starting from time step 𝑡 as a weighted sum of future reward signals: discounted

return

𝑅𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + … =
∞

ඉ
𝑘=1

𝛾𝑘𝑟𝑡+𝑘, (1)

where 0 ≤ 𝛾 ≤ 1 determines the rate at which future rewards are discounted relative to immediate
outcomes. Discounted returns are especially useful in continuing tasks that do not have a natural end-
point, as in this case the total (un-discounted) return may be infinite.

One challenge in RL is that it is often not obvious how best to define the state of the environment.
In simple games like checkers, the configuration of pieces on the board seems like an obvious choice.
But this is not the only possibility. One could also include the entire history of previous moves in the
definition of the state of the game. This more elaborate definition would distinguish between two board
configurations that have an identical arrangement of pieces, but were arrived at via dierent sequences
of moves. An important concept in RL is known as theMarkov property. A particular definition of the Markov

property
state 𝒮 satisfies the Markov property if and only if the transition and reward probabilities, 𝒫 and ℛ,
depend on the state 𝑠 and action 𝑎 at time 𝑡, but are independent of the past sequence of observed states
and previous actions. In other words, if including the entire history of past states and actions does not
provide any additional useful information, then the state definition meets the Markov property.

The Markov property is an important concept in reinforcement learning for two reasons. First, in-
cluding unnecessary variables in the definition of the state can severely impede learning, and theMarkov
property defines an important criterion for judging whether such extraneous information can be safely
discarded. In checkers, the current configuration of pieces on the board does satisfy the Markov prop-
erty, and so it is not necessary to remember the entire history of past moves. Second, for many algo-
rithms developed in RL, the proof of their convergence or optimality depends on the assumption of the
Markov property. These algorithms can exhibit unexpected or suboptimal behavior if applied to decision
environments that do not satisfy the Markov property.

2.1 Value functions

Intuitively, it can be seen that some states of the environment are more advantageous than others.
Having many pieces remaining in a game of checkers is generally preferable to only having one or two
pieces left. However, a skilled player may still be able to win a game despite having fewer pieces on the
board. Thus, the value of a particular state also depends on the policy, 𝜋(𝑠, 𝑎). Skilled players possess
more successful policies than novice players, and so will generally assign higher values to each state.
More formally, the value of a particular state, and given a particular behavioral policy, can be defined
recursively as

𝑉 𝜋(𝑠) = ඉ
𝑎

𝜋(𝑠, 𝑎) ඉ
𝑠′

𝒫 𝑎
𝑠,𝑠′ ඹℛ𝑎

𝑠,𝑠′ + 𝛾𝑉 𝜋(𝑠ດ)ය . (2)

This state value function, also known as the Bellman equation after its discoverer Richard Bellman, Bellman
equation

2



says that the expected value of a particular state 𝑠 is defined by the immediate reward that comes from
acting in that state, plus the discounted value of the subsequent state 𝑠ດ that is reached. The equation is
recursive in that the value of any one state is defined by reference to the value of other states. The two
summations are due to the fact that it is necessary to average over two potential sources of variability:
the stochastic nature of state transitions as encapsulated by 𝒫 , and the possibly stochastic nature of the
policy 𝜋(𝑠, 𝑎).

It is also possible to define the Bellman optimality equation, which is simply the value function as-
sociated with the best-possible policy:

𝑉 ⋆(𝑠) = max
𝜋

𝑉 𝜋(𝑠)

= max
𝑎 ඉ

𝑠′
𝒫 𝑎

𝑠,𝑠′ ඹℛ𝑎
𝑠,𝑠′ + 𝛾𝑉 ⋆(𝑠ດ)ය . (3)

The Bellman optimality equation (actually a system of equations, one for each state) is a key con-
struct in all reinforcement learning algorithms, and so it is worth considering it in detail. First, if one has
access to the value for each state, then it is a simple matter to derive the corresponding optimal policy:
One simply selects the action that maximizes the expected value, determined via the right hand side
of the equation. In essence, existence of the Bellman optimality equation turns the dicult problem of
optimal decision making into a much simpler local search problem. For small state spaces, this system
of equations can also be solved analytically using techniques such as dynamic programming to obtain
both the value function and the optimal policy.

Additionally, the Bellman optimality equation can be viewed as a consistency requirement: the left
hand side of the equationmust equal the right hand side, for all states. Any behavior policy that satisfies
this mathematical equation is guaranteed to be an optimal policy (optimal policies are not necessarily
unique, however). Relying on this important property, equation (3) forms the basis of nearly all RL al-
gorithms. In a nutshell, the goal of reinforcement learning is to improve performance by progressively
adjusting a suboptimal policy to reduce the inconsistency between the left and right sides of this equa-
tion. Such incremental improvement algorithms are often tractable even for large state spaces where
dynamic programming solutions are infeasible. In fact, all reinforcement learning algorithms can be
considered as approximate solution methods to the Bellman optimality equation.

approximate
solution
methods

3. Reinforcement learning algorithms

This section briefly discusses several reinforcement learning algorithms. This examination is by no
means exhaustive; for more details refer to (Sutton& Barto, 1998), full reference given at the beginning
of this document.

3.1 TD learning

From the Bellman equations, we know that the value for each state is the average immediate reward
plus the discounted value of the subsequent state. If we do not know the state values, then a simple
approach is to start with an initial guess for 𝑉(𝑠), and gradually improve the estimate as we gain more
experience. Suppose we start in state 𝑠, and select action 𝑎 according to some policy 𝜋(𝑠, 𝑎). We then
observe an immediate reward 𝑟 and arrive at state 𝑠ດ. The observed quantity 𝑟+𝛾𝑉(𝑠ດ) is actually aMonte
Carlo sample from the Bellman equation for policy 𝜋. If we repeated the same process many times and
averaged the results, we would exactly obtain the right hand side of equation (2). Using this fact, we
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can define an incremental learning rule for updating 𝑉(𝑠) so that it more closely reflects the true state
value:

𝑉(𝑠) ← 𝑉(𝑠) + 𝛼 ൰𝑟 + 𝛾𝑉(𝑠ດ) − 𝑉(𝑠)൱ . (4)

The quantity 𝑟 + 𝛾𝑉(𝑠ດ) − 𝑉(𝑠) is defined as the temporal dierence error, often abbreviated as TD
temporal
dierence
errorerror. This update equation gives rise to perhaps the simplest reinforcement learning algorithm, known

as TD learning. In this equation, 𝛼 is a constant learning rate parameter in the range 0 ≤ 𝛼 ≤ 1. It is
learning ratedesirable to set 𝛼 < 1, due to the fact that rewards and state transitions are potentially stochastic, as well

as the fact that we expect that the values for all states will change over the course of learning. Note that
this learning rule relies on a bootstrapping process: The value of each state is updated on the basis of
the estimated value of subsequent states. Perhaps surprisingly, even if we start with an incorrect guess
for the value of each state, this learning rule will eventually converge on the true value function (exact
convergence requires that the learning rate gradually decreases and approaches zero).

3.2 Q learning

While TD learning will eventually learn the value function for a given policy 𝜋, ideally we would like
to improve a policy at the same time that we learn its associated value function. This is not easily
accomplished through TD learning, because the estimated value for each state is based on the potentially
suboptimal policy 𝜋. One way to get around this is to learn an action-value function 𝑄(𝑠, 𝑎) rather than
the value function 𝑉(𝑠). The function 𝑄(𝑠, 𝑎) indicates the value of taking action 𝑎 in state 𝑠. Consider
the following update rule for the action-value function:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 ෮𝑟 + 𝛾 max
𝑎′

𝑄(𝑠ດ, 𝑎ດ) − 𝑄(𝑠, 𝑎)෯ . (5)

As before, the updates are based on a bootstrap process. However, the max operator in this equation
implies that the update at each step is not based on the current (and potentially suboptimal) policy, but
rather on the best possible action one could take in the resulting state. Note also the similarity between
this update rule and the Bellman optimality equation, (3). ThisQ-learning update rule is actually based
on a Monte Carlo sample from the optimal value function. At each step, behavior approximating the
optimal policy can be determined by selecting the action with the highest 𝑄(𝑠, 𝑎) value. Perhaps re-
markably, Q-learning will still converge on the optimal state-action values even if the actions selected
on each step follow a suboptimal policy. Conditions for convergence require that in the limit of infinite
task experience, all state-action pairs are explored an infinite number of times, and that the learning
rate gradually decreases over time. Because of its ability to learn the optimal policy while following
another policy for action selection, Q-learning is known as an o-policy learning algorithm. The basic o-policy

learning
Q-learning algorithm is presented in Algorithm (1).

To demonstrate the performance of Q-learning, consider the cave exploration task in Figure 1a. The
goal is to navigate from the starting position at the top of themaze to the treasure (located at the bottom
of the maze) while incurring as little cost as possible. Crossing each open square costs 1 point, while
crossingwater (blue squares) costs 100 points. The agent canmove in the four cardinal directions, unless
blocked by walls. In addition, with probability= 0.2, the agent becomes disoriented and takes a step in a
random direction. The action-value function 𝑄(𝑠, 𝑎) was initialized to zero for all states and actions, and
on each step the agent selected actions randomly. After 1,000 training episodes, Q-learning was able to
infer the optimal policy (illustrated in Figure 1b). Note that the optimal path through the maze is not

4



Algorithm 1Q-learning.
Inputs:

𝑄(𝑠, 𝑎): State-action values, initialized arbitrarily
𝑠0: Initial state

Algorithm:
𝑠 ← 𝑠0
Repeat

Choose 𝑎 for the current state 𝑠 based on Q(s,a)
Take action 𝑎, observe reward 𝑟 and resulting state 𝑠ດ

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 ൰𝑟 + 𝛾 max𝑎′ 𝑄(𝑠ດ, 𝑎ດ) − 𝑄(𝑠, 𝑎)൱
𝑠 ← 𝑠ດ

Until the end of the learning episode
Return 𝑄(𝑠, 𝑎), the updated state-action values

$

●

$

●

(a) (b) (c)

Figure 1: (a) The cave exploration task. Crossing each open square costs 1 point; crossing water (blue
squares) costs 100 points. (b) Optimal policy learned by Q-learning after 1,000 training episodes. (c)
Optimal value function, defined according to equation 3. Darker shading indicates states with lower
value.

the shortest path, but rather one that minimizes expected cost, taking into account the probability of
accidentally stepping into awater square. Figure 1c plots the optimal value function for this task, learned
via Q-learning, showing the minimum expected cost-to-go for each state, assuming the optimal policy
is followed.

3.3 Action selection and the exploration-exploitation dilemma

It seems intuitive that on each decision, one should always select the action that has the highest expected
value. But is this really a good idea? In the face of uncertainty regarding the structure of a task, optimal
performance requires balancing exploration of the task with actions that exploit current knowledge. In
most cases, exploration requires selecting actions that have lower expected value according to current
knowledge. In the general case of Markov decision processes, the optimal balance between exploration
and exploitation is an intractable problem to solve. For this reason, much of RL relies on heuristic or
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Figure 2: Average cost per episode over the course of learning. Exploration is based on 𝜖-greedy action
selection, using two dierent values of the parameter 𝜖. Each curve is based on the average performance
of 1,000 simulated agents.

approximate solutions to this tradeo.
One simple approach to balancing exploration and exploitation is to occasionally select actions with

sub-optimal value. For example, one can choose the optimal action with probability (1 − 𝜖), and with
probability 𝜖 choose a randomaction. This approach, known as epsilon-greedy action selection, is simple

epsilon-
greedy action
selectionto implement and works well in many cases. Figure 2 shows the learning performance, defined in terms

of the total cost incurred on each episode, for the cave exploration task using two dient values of 𝜖.
One disadvantage of 𝜖-greedy action selection is that it does not take into account the utility of

actions during exploration. An alternative approach, known as softmax action selection, chooses actions
softmax
action
selectionrelative to their value, so that actions with extremely low utility are less likely to be chosen. Specifically,

one can define a noise parameter 𝜏, and choose an action 𝑎 with probability

𝑃(𝑎) =
exp (𝑄(𝑠, 𝑎)/𝜏)

∑𝑛
𝑖=1 exp ൭𝑄(𝑠, 𝑎𝑖)/𝜏൮

. (6)

When the noise parameter is close to zero, this equation selects the action with the highest utility with
probability 1. As the noise approaches infinity, actions are selected randomly, without regard for their
utility. The name ’softmax’ derives from the fact that the approach usually, but not always, selects the
action with maximal utility.

3.4 Eligibility traces

One notable feature of the algorithms presented so far is that the occurrence of a reward only impacts
the value of the state immediately preceding the reward. That is to say, utility updates are only based
on the temporal dierence error between a given state, and the next state that is reached after executing
some action. This has the undesirable consequence that in large state spaces, learning can be extremely
slow. Intuitively, one might imagine that receiving a reward should increase the utility of all previous
actions leading up to the reward, and not just the most recent action.
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Oneway of incorporating this intuition into the learning algorithm is tomaintain a trace, or history,
of each state encountered during a learning episode. When a state is encountered with better-than-
anticipated value, (a positive TD error), the values of all previous states are increased. Similarly, values
are decreased when the agent encounters unexpected penalties or rewards that are lower than expected
(negative TD error). To increase the generality of this approach, one can also allow the ‘eligibility’ of
past states to decay over time, so that changes in value are larger for states that were more recently
encountered. In particular, one can define an eligibility trace 𝑒(𝑠) that indicates the extent to which the eligibility

trace
value for state 𝑠 should be modified based on the current TD error. Each time a state is encountered, its
eligibility is reset to 1. For all other states, the eligibility is multiplied by 0 ≤ 𝜆 ≤ 1. When 𝜆 = 0, this
approach is identical to the standard, ‘one-step’ update rules already encountered.

Algorithm 2 TD(𝜆) learning
Inputs:

𝑉(𝑠):Value function, initialized arbitrarily
𝜋(𝑠, 𝑎): Policy to be evaluated
𝑠0: Initial state

Algorithm:
𝑠 ← 𝑠0
𝑒(𝑠) ← 0
Repeat

Choose 𝑎 defined by the policy 𝜋(𝑠, 𝑎)
Take action 𝑎, observe reward 𝑟 and resulting state 𝑠ດ

𝛿 ← 𝑟 + 𝛾𝑉(𝑠ດ) − 𝑉(𝑠) // 𝛿 = temporal dierence error
𝑒(𝑠) ← 1
For all 𝑠 with 𝑒(𝑠) > 0

𝑉(𝑠) ← 𝑉(𝑠) + 𝛼𝛿𝑒(𝑠)
𝑒(𝑠) ← 𝛾𝜆𝑒(𝑠)

𝑠 ← 𝑠ດ

Until the end of the learning episode
Return 𝑄(𝑠, 𝑎), the updated state-action values

Algorithm 2 presents a basic ‘TD(𝜆)’ learning algorithm that incorporates eligibility traces. In gen-
eral, there is no optimal setting of the parameter 𝜆 for all tasks. Many variants of eligibility traces have
also been considered. One possibility is to increment the eligibility of each state, rather than reset its
eligibility trace, each time it is encountered. Eligibility traces have also been incorporated in policy learn-
ing algorithms such as Q-learning. One complication is that for o-policy learning algorithms such as
Q-learning, state values should not be influenced by future exploratory actions, but rather only by the
rewards observed while following the optimal policy. A simple modification of the basic Q-learning
algorithm is to define an eligibility trace 𝑒(𝑠, 𝑎) for each state-action pair, updating them as in the case
of the TD(𝜆) algorithm. But whenever exploratory (or suboptimal) actions are selected, the eligibility
traces for all states are reset to zero. This leads to the algorithm known as Watkins’ Q(𝜆), named after Q(𝜆)
the researcher who first proposed it. Note that the material presented here only touches the surface of
the large field of reinforcement learning. Readers are encouraged to consult (Sutton & Barto, 1998) for
a more comprehensive introduction.
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