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probability distribution spatio-temporal neural activity patterns

on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xi

m characterizing the ith neuron
in the mth memory trace. Here, we treat xi

m as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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A SIMPLE TAXONOMY OF PROBABILISTIC REPRESENTATIONS

3

probability distribution spatio-temporal neural activity patterns

on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xi

m characterizing the ith neuron
in the mth memory trace. Here, we treat xi

m as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xi

m characterizing the ith neuron
in the mth memory trace. Here, we treat xi

m as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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Figure 1: Variance of response versus mean response, on log-log axes, for 4 representative
model neurons. Each dot gives the mean (horizontal axis) and variance (vertical axis) of
the response of the model neuron in question to one particular stimulus. Note that the scale
of responses is completely arbitrary.

We will now explain how both aspects of response variability described in the introduction
can be understood in this framework. First, we will show how a simple mean-variance re-
lationship can arise through sampling in the independent component analysis model. Then,
we will consider how the variability associated with the phenomenon of visual competion
can be interpreted using sampling.

3.1 Example 1: Posterior sampling in ICA

Here, we sample the posterior distribution in the ICA model of natural images, and show
how this might relate to the conspicious variance-mean relation of neural response vari-
ability. First, we used standard ICA methods [17] to estimate a complete basis for the
40-dimensional principal subspace of -pixel natural image patches. Motivated by
the non-negativity of neural firing rates we modified the model to assume single-sided ex-
ponential priors [18], and augmented the basis so that a pair of neurons
coded separately for the positive and negative parts of each original independent compo-
nent. We then took 50 random natural image patches and sampled the posterior distribu-
tions for all 50 patches , taking a total of 1000 samples in each case.2

From the 1000 collected samples, we calculated the mean and variance of the response of
each neuron to each stimulus separately. We then plotted the variance against the mean
independently for each neuron in log-log coordinates. Figure 1 shows the plots from 4
randomly selected neurons. The crucial thing to note is that, as for real neurons [1], the
variance of the response is systematically related to the mean response, and does not seem
to depend on the particular stimulus used to elicit a given mean response. This feature of
neural variability is perhaps the single most important reason to believe that the variability
is meaningless noise inherent in neural firing; yet we have shown that something like this
might arise through sampling in a simple probabilistic model.

Following [1, 2], we fitted lines to the plots, modeling the variance as var mean .
Over the whole population (80 model neurons), the mean values of and were
and , with population standard deviations and (respectively). Although these
values do not actually match those obtained from physiology (most reports give values of
between 1 and 2, and close to 1, see [1, 2]), this is to be expected. First, the values of these
parameters probably depend on the specifics of the ICA model, such as its dimensionality
and the noise level; we did not optimize these to attempt to fit physiology. Second, and
more importantly, we do not believe that ICA is an exact model of V1 function. Rather, the
visual cortex would be expected to employ a much more complicated, hierarchical, image

2This was accomplished using a Markov Chain Monte Carlo method, as described in the Ap-
pendix. However, the technical details of this method are not very relevant to this argument.

mean
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Poisson-like variability (sparse coding)
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static display paradigm that allowed us to monitor the
temporal evolution of responses to specific stimulus loca-
tions. We found that neurons in V1 do indeed respond to
illusory contours, e.g., completing the contour induced by
the partial disks shown in Fig. 3, although at a latency
greater than that in V2.

In this experiment, the monkey was asked to fixate at a
spot on the screen, while the Kanizsa square was pre-
sented at different locations on the computer monitor in
different trials. Over successive trials, the responses of
the neurons to the different locations relative to the illu-
sory contour was recorded (Fig. 3). At the beginning of
the experiment, consistent with Von der Heydt’s earlier
report,66 we found that V1 neurons in fact do not respond
to the illusory contours. We then realized that because
the partial disks (pac men) were shown in the periphery,
the monkey might simply be seeing the on and off flashing
of partial disks on the screen without perceiving the illu-
sory square. We took several measures to enhance the
monkey’s attention to the illusory square. First, we
placed the fixation spot inside the illusory square, so that
the monkey was looking at the illusory square. Second,
we presented the stimuli in a sequence: Four black cir-
cular disks appeared first for 400 ms and then turned into
the partial disks, creating an illusion that a white square

had abruptly appeared in front of the circular disks, oc-
cluding them. The sudden onset of the illusory square
also served to capture the attention of the monkey to the
square. Third, we introduced in our presentation a se-
ries of ‘‘teaching’’ stimuli, i.e., real squares that are de-
fined by line or contrast to help the monkey ‘‘see’’ the il-
lusion. Remarkably, in the third session after this shift
in paradigm, we started to find V1 neurons responding to
the illusory contour in the stimulus (Fig. 4).

The neural correlate of the illusory contour signal
emerged in V1 neurons at precisely the same location
where a line or luminance contrast elicited the maximum
response from the cell [Fig. 4(a)]. The response to the il-
lusory contour was delayed relative to the response to the
real contours by 55 ms [Fig. 4(b)], emerging !100 ms af-
ter stimulus onset. The response to the illusory contour
was significantly greater than the response to the con-
trols, including the amodal contour or when the partial
disks were rotated. At the population level, we found
that sensitivity to illusory contours emerged at 65 ms in
V2, 35 ms ahead of V1 [Fig. 4(c) and 4(d)]. A possible ex-
planation is that V2 detects the existence of an illusory
contour by integrating information from a spatially more
global context and then generates a prior P(xv1!xv2) to
constrain the contour inference in V1. The resulting con-

Fig. 4. (a) Spatial profile of a V1 neuron’s response to the contours of both real and illusory squares, in a temporal window 100–150 ms
after stimulus onset. The real or illusory square was placed at different spatial locations relative to the receptive field of the cell. This
cell responded to the illusory contour when it was at precisely the same location where a real contour evoked the maximal response from
the neuron. It also responded significantly better to the illusory contour than to the amodal contour (t test, p ! 0.003) and did not
respond much when the partial disks were rotated. (b) Temporal evolution of the cell’s response to the illusory contour compared with
its response to the real contours of a line square or a white square, as well as to the amodal contour. The onset of the response to the
real contours was at 45 ms, !55 ms ahead the illusory contour response. (c) Population-averaged temporal response of 49 V1 neurons
in the superficial layer to the illusory contours and controls. (d) Population-averaged temporal response of 39 V2 neurons in the su-
perficial layer to the illusory contours and controls. The results show that V2 responds to illusory contour earlier than V1. See Lee and
Nguyen48 for details.
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Figure 1: Variance of response versus mean response, on log-log axes, for 4 representative
model neurons. Each dot gives the mean (horizontal axis) and variance (vertical axis) of
the response of the model neuron in question to one particular stimulus. Note that the scale
of responses is completely arbitrary.

We will now explain how both aspects of response variability described in the introduction
can be understood in this framework. First, we will show how a simple mean-variance re-
lationship can arise through sampling in the independent component analysis model. Then,
we will consider how the variability associated with the phenomenon of visual competion
can be interpreted using sampling.

3.1 Example 1: Posterior sampling in ICA

Here, we sample the posterior distribution in the ICA model of natural images, and show
how this might relate to the conspicious variance-mean relation of neural response vari-
ability. First, we used standard ICA methods [17] to estimate a complete basis for the
40-dimensional principal subspace of -pixel natural image patches. Motivated by
the non-negativity of neural firing rates we modified the model to assume single-sided ex-
ponential priors [18], and augmented the basis so that a pair of neurons
coded separately for the positive and negative parts of each original independent compo-
nent. We then took 50 random natural image patches and sampled the posterior distribu-
tions for all 50 patches , taking a total of 1000 samples in each case.2

From the 1000 collected samples, we calculated the mean and variance of the response of
each neuron to each stimulus separately. We then plotted the variance against the mean
independently for each neuron in log-log coordinates. Figure 1 shows the plots from 4
randomly selected neurons. The crucial thing to note is that, as for real neurons [1], the
variance of the response is systematically related to the mean response, and does not seem
to depend on the particular stimulus used to elicit a given mean response. This feature of
neural variability is perhaps the single most important reason to believe that the variability
is meaningless noise inherent in neural firing; yet we have shown that something like this
might arise through sampling in a simple probabilistic model.

Following [1, 2], we fitted lines to the plots, modeling the variance as var mean .
Over the whole population (80 model neurons), the mean values of and were
and , with population standard deviations and (respectively). Although these
values do not actually match those obtained from physiology (most reports give values of
between 1 and 2, and close to 1, see [1, 2]), this is to be expected. First, the values of these
parameters probably depend on the specifics of the ICA model, such as its dimensionality
and the noise level; we did not optimize these to attempt to fit physiology. Second, and
more importantly, we do not believe that ICA is an exact model of V1 function. Rather, the
visual cortex would be expected to employ a much more complicated, hierarchical, image

2This was accomplished using a Markov Chain Monte Carlo method, as described in the Ap-
pendix. However, the technical details of this method are not very relevant to this argument.
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static display paradigm that allowed us to monitor the
temporal evolution of responses to specific stimulus loca-
tions. We found that neurons in V1 do indeed respond to
illusory contours, e.g., completing the contour induced by
the partial disks shown in Fig. 3, although at a latency
greater than that in V2.

In this experiment, the monkey was asked to fixate at a
spot on the screen, while the Kanizsa square was pre-
sented at different locations on the computer monitor in
different trials. Over successive trials, the responses of
the neurons to the different locations relative to the illu-
sory contour was recorded (Fig. 3). At the beginning of
the experiment, consistent with Von der Heydt’s earlier
report,66 we found that V1 neurons in fact do not respond
to the illusory contours. We then realized that because
the partial disks (pac men) were shown in the periphery,
the monkey might simply be seeing the on and off flashing
of partial disks on the screen without perceiving the illu-
sory square. We took several measures to enhance the
monkey’s attention to the illusory square. First, we
placed the fixation spot inside the illusory square, so that
the monkey was looking at the illusory square. Second,
we presented the stimuli in a sequence: Four black cir-
cular disks appeared first for 400 ms and then turned into
the partial disks, creating an illusion that a white square

had abruptly appeared in front of the circular disks, oc-
cluding them. The sudden onset of the illusory square
also served to capture the attention of the monkey to the
square. Third, we introduced in our presentation a se-
ries of ‘‘teaching’’ stimuli, i.e., real squares that are de-
fined by line or contrast to help the monkey ‘‘see’’ the il-
lusion. Remarkably, in the third session after this shift
in paradigm, we started to find V1 neurons responding to
the illusory contour in the stimulus (Fig. 4).

The neural correlate of the illusory contour signal
emerged in V1 neurons at precisely the same location
where a line or luminance contrast elicited the maximum
response from the cell [Fig. 4(a)]. The response to the il-
lusory contour was delayed relative to the response to the
real contours by 55 ms [Fig. 4(b)], emerging !100 ms af-
ter stimulus onset. The response to the illusory contour
was significantly greater than the response to the con-
trols, including the amodal contour or when the partial
disks were rotated. At the population level, we found
that sensitivity to illusory contours emerged at 65 ms in
V2, 35 ms ahead of V1 [Fig. 4(c) and 4(d)]. A possible ex-
planation is that V2 detects the existence of an illusory
contour by integrating information from a spatially more
global context and then generates a prior P(xv1!xv2) to
constrain the contour inference in V1. The resulting con-

Fig. 4. (a) Spatial profile of a V1 neuron’s response to the contours of both real and illusory squares, in a temporal window 100–150 ms
after stimulus onset. The real or illusory square was placed at different spatial locations relative to the receptive field of the cell. This
cell responded to the illusory contour when it was at precisely the same location where a real contour evoked the maximal response from
the neuron. It also responded significantly better to the illusory contour than to the amodal contour (t test, p ! 0.003) and did not
respond much when the partial disks were rotated. (b) Temporal evolution of the cell’s response to the illusory contour compared with
its response to the real contours of a line square or a white square, as well as to the amodal contour. The onset of the response to the
real contours was at 45 ms, !55 ms ahead the illusory contour response. (c) Population-averaged temporal response of 49 V1 neurons
in the superficial layer to the illusory contours and controls. (d) Population-averaged temporal response of 39 V2 neurons in the su-
perficial layer to the illusory contours and controls. The results show that V2 responds to illusory contour earlier than V1. See Lee and
Nguyen48 for details.
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Figure 1: Variance of response versus mean response, on log-log axes, for 4 representative
model neurons. Each dot gives the mean (horizontal axis) and variance (vertical axis) of
the response of the model neuron in question to one particular stimulus. Note that the scale
of responses is completely arbitrary.

We will now explain how both aspects of response variability described in the introduction
can be understood in this framework. First, we will show how a simple mean-variance re-
lationship can arise through sampling in the independent component analysis model. Then,
we will consider how the variability associated with the phenomenon of visual competion
can be interpreted using sampling.

3.1 Example 1: Posterior sampling in ICA

Here, we sample the posterior distribution in the ICA model of natural images, and show
how this might relate to the conspicious variance-mean relation of neural response vari-
ability. First, we used standard ICA methods [17] to estimate a complete basis for the
40-dimensional principal subspace of -pixel natural image patches. Motivated by
the non-negativity of neural firing rates we modified the model to assume single-sided ex-
ponential priors [18], and augmented the basis so that a pair of neurons
coded separately for the positive and negative parts of each original independent compo-
nent. We then took 50 random natural image patches and sampled the posterior distribu-
tions for all 50 patches , taking a total of 1000 samples in each case.2

From the 1000 collected samples, we calculated the mean and variance of the response of
each neuron to each stimulus separately. We then plotted the variance against the mean
independently for each neuron in log-log coordinates. Figure 1 shows the plots from 4
randomly selected neurons. The crucial thing to note is that, as for real neurons [1], the
variance of the response is systematically related to the mean response, and does not seem
to depend on the particular stimulus used to elicit a given mean response. This feature of
neural variability is perhaps the single most important reason to believe that the variability
is meaningless noise inherent in neural firing; yet we have shown that something like this
might arise through sampling in a simple probabilistic model.

Following [1, 2], we fitted lines to the plots, modeling the variance as var mean .
Over the whole population (80 model neurons), the mean values of and were
and , with population standard deviations and (respectively). Although these
values do not actually match those obtained from physiology (most reports give values of
between 1 and 2, and close to 1, see [1, 2]), this is to be expected. First, the values of these
parameters probably depend on the specifics of the ICA model, such as its dimensionality
and the noise level; we did not optimize these to attempt to fit physiology. Second, and
more importantly, we do not believe that ICA is an exact model of V1 function. Rather, the
visual cortex would be expected to employ a much more complicated, hierarchical, image

2This was accomplished using a Markov Chain Monte Carlo method, as described in the Ap-
pendix. However, the technical details of this method are not very relevant to this argument.
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.
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static display paradigm that allowed us to monitor the
temporal evolution of responses to specific stimulus loca-
tions. We found that neurons in V1 do indeed respond to
illusory contours, e.g., completing the contour induced by
the partial disks shown in Fig. 3, although at a latency
greater than that in V2.

In this experiment, the monkey was asked to fixate at a
spot on the screen, while the Kanizsa square was pre-
sented at different locations on the computer monitor in
different trials. Over successive trials, the responses of
the neurons to the different locations relative to the illu-
sory contour was recorded (Fig. 3). At the beginning of
the experiment, consistent with Von der Heydt’s earlier
report,66 we found that V1 neurons in fact do not respond
to the illusory contours. We then realized that because
the partial disks (pac men) were shown in the periphery,
the monkey might simply be seeing the on and off flashing
of partial disks on the screen without perceiving the illu-
sory square. We took several measures to enhance the
monkey’s attention to the illusory square. First, we
placed the fixation spot inside the illusory square, so that
the monkey was looking at the illusory square. Second,
we presented the stimuli in a sequence: Four black cir-
cular disks appeared first for 400 ms and then turned into
the partial disks, creating an illusion that a white square

had abruptly appeared in front of the circular disks, oc-
cluding them. The sudden onset of the illusory square
also served to capture the attention of the monkey to the
square. Third, we introduced in our presentation a se-
ries of ‘‘teaching’’ stimuli, i.e., real squares that are de-
fined by line or contrast to help the monkey ‘‘see’’ the il-
lusion. Remarkably, in the third session after this shift
in paradigm, we started to find V1 neurons responding to
the illusory contour in the stimulus (Fig. 4).

The neural correlate of the illusory contour signal
emerged in V1 neurons at precisely the same location
where a line or luminance contrast elicited the maximum
response from the cell [Fig. 4(a)]. The response to the il-
lusory contour was delayed relative to the response to the
real contours by 55 ms [Fig. 4(b)], emerging !100 ms af-
ter stimulus onset. The response to the illusory contour
was significantly greater than the response to the con-
trols, including the amodal contour or when the partial
disks were rotated. At the population level, we found
that sensitivity to illusory contours emerged at 65 ms in
V2, 35 ms ahead of V1 [Fig. 4(c) and 4(d)]. A possible ex-
planation is that V2 detects the existence of an illusory
contour by integrating information from a spatially more
global context and then generates a prior P(xv1!xv2) to
constrain the contour inference in V1. The resulting con-

Fig. 4. (a) Spatial profile of a V1 neuron’s response to the contours of both real and illusory squares, in a temporal window 100–150 ms
after stimulus onset. The real or illusory square was placed at different spatial locations relative to the receptive field of the cell. This
cell responded to the illusory contour when it was at precisely the same location where a real contour evoked the maximal response from
the neuron. It also responded significantly better to the illusory contour than to the amodal contour (t test, p ! 0.003) and did not
respond much when the partial disks were rotated. (b) Temporal evolution of the cell’s response to the illusory contour compared with
its response to the real contours of a line square or a white square, as well as to the amodal contour. The onset of the response to the
real contours was at 45 ms, !55 ms ahead the illusory contour response. (c) Population-averaged temporal response of 49 V1 neurons
in the superficial layer to the illusory contours and controls. (d) Population-averaged temporal response of 39 V2 neurons in the su-
perficial layer to the illusory contours and controls. The results show that V2 responds to illusory contour earlier than V1. See Lee and
Nguyen48 for details.
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our model, CPs are the result of both feedforward (bottom-up)
and feedback (top-down) processing. A stochastic increase in
firing of a sensory neuron does increase the probability of a de-
cision consistent with the activity of this neuron (feedforward).
In the absence of noise correlations caused by the decision
variable (Ecker et al., 2010), the strength of this effect depends
inversely on the number of sensory neurons contributing to the
decision (Shadlen et al., 1996; Haefner et al., 2013).
In our model, CPs at the beginning of the trial are primarily

due to this feedforward pathway, since no coherent top-
down belief has formed yet, i.e., the current belief over D is
only weakly correlated with the final choice. While we assume
an unbiased prior over the correct decision, biased expecta-
tions about the upcoming correct choice generally increase
CPs at stimulus onset, albeit through the feedback pathway.
At any point throughout the trial, the brain’s belief about the
correct decision reflects the accumulated sensory information
presented earlier in the trial. This constitutes prior information
about the likely retinal image at that point, which influences
the brain’s belief about the content of the image and, hence,
the responses of sensory neurons representing this belief. In
general, as the trial progresses and the top-down belief about
the correct decision becomes stronger, CPs are enhanced by
an increasing top-down component and increasingly reflect
the accumulation of evidence about the decision variable (Fig-
ures 6A and 6C). The crucial point here is that the posterior
belief over x at some time t within the trial depends on both
the current observation It, but also all previous observations
I1:::t. Information about these previous observations is commu-
nicated to a neuron representing xt via the posterior belief
over the correct decision, ptðDÞ at time t (Figure 6E, i.e.,
ptðDÞhpðD j I1; ::; ItÞ ).

Second, CPs in our model are largest for those neurons whose
preferred orientation is closest to the task-relevant orientations
(Figure 6B), a relationship in agreement with empirical data (Co-
hen and Newsome, 2009; Bosking and Maunsell, 2011). Since
neurons whose preferred orientation is aligned with the task
axes are also the most informative about the correct decision,
the relationship in Figure 6B implies a correlation between neuro-
metric thresholds and CPs, consistent with empirical findings
(Nienborg et al., 2012). As for noise correlations described
above, our model predictions concern the qualitative shape of
the CP dependence on time and preferred orientation, not their
magnitude. Regardless of the particular parameter values in
our model, CPs increase over time and are largest for neurons
most modulated by the task-relevant stimulus dimension. This
is in agreement with empirical evidence not just for coarse but
also for fine discrimination tasks (Purushothaman and Bradley,
2005) where neurons with the steepest tuning curve slope have
the highest CPs. Third, as for the amplitude of the noise correla-
tions, the magnitude of CPs is related to the degree to which the
brain has learned the task model. This predicts that the CP for
task-relevant neurons should increase with learning, as has
been observed empirically (Law and Gold, 2008).

Correlations between Stimulus and Behavior
The strength of the correlation between stimulus and behavior in
2AFC tasks is typically measured by the PK (Neri et al., 1999;
Ahumada, 2002; Nienborg and Cumming, 2009). The PK quan-
tifies how strongly the evidence in the stimulus is weighted in
the decision-making as a function of the time at which the evi-
dence is presented during the trial. Our model predicts that the
weighting decreases over time (Figure 7A) so that evidence pre-
sented early in the trial has a larger influence on the final decision

A B

C D

Figure 4. Model Predictions for Noise Corre-
lations between the Sensory Neurons in Our
Model
(A) Full correlationmatrix with neurons sorted by their

preferred orientation. The task-relevant orientations

are indicated at 45# and 135#. Only the qualitative

shape is predicted by our model; the overall magni-

tude depends on the particular choice of model

parameters (and can be fit to data).

(B) Same as (A) is shown, but for a cardinal orienta-

tions task.

(C) Correlation coefficients as a function of difference

in preferred orientation between the two neurons in a

pair. Red represents all pairs where each neuron’s

preferred orientation is closest to the same task-

relevant orientation (i.e., supports the same choice).

Blue represents all pairs in which the two neurons are

aligned with different choices. The variability around

the means reflects the measurement noise from

1,000 simulated trials.

(D) Noise correlations recorded between neurons in

area MT for a motion direction task (Cohen and

Newsome, 2008; data are replotted from Figure 4

therein). Since motion direction has a period of 360#

compared to a period of 180# for orientation, differ-

ences in preferred orientation between 0# and 90# in

(C) are comparable to differences in preferred di-

rection between 0# and 180# in (D).
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Figure 1: Variance of response versus mean response, on log-log axes, for 4 representative
model neurons. Each dot gives the mean (horizontal axis) and variance (vertical axis) of
the response of the model neuron in question to one particular stimulus. Note that the scale
of responses is completely arbitrary.

We will now explain how both aspects of response variability described in the introduction
can be understood in this framework. First, we will show how a simple mean-variance re-
lationship can arise through sampling in the independent component analysis model. Then,
we will consider how the variability associated with the phenomenon of visual competion
can be interpreted using sampling.

3.1 Example 1: Posterior sampling in ICA

Here, we sample the posterior distribution in the ICA model of natural images, and show
how this might relate to the conspicious variance-mean relation of neural response vari-
ability. First, we used standard ICA methods [17] to estimate a complete basis for the
40-dimensional principal subspace of -pixel natural image patches. Motivated by
the non-negativity of neural firing rates we modified the model to assume single-sided ex-
ponential priors [18], and augmented the basis so that a pair of neurons
coded separately for the positive and negative parts of each original independent compo-
nent. We then took 50 random natural image patches and sampled the posterior distribu-
tions for all 50 patches , taking a total of 1000 samples in each case.2

From the 1000 collected samples, we calculated the mean and variance of the response of
each neuron to each stimulus separately. We then plotted the variance against the mean
independently for each neuron in log-log coordinates. Figure 1 shows the plots from 4
randomly selected neurons. The crucial thing to note is that, as for real neurons [1], the
variance of the response is systematically related to the mean response, and does not seem
to depend on the particular stimulus used to elicit a given mean response. This feature of
neural variability is perhaps the single most important reason to believe that the variability
is meaningless noise inherent in neural firing; yet we have shown that something like this
might arise through sampling in a simple probabilistic model.

Following [1, 2], we fitted lines to the plots, modeling the variance as var mean .
Over the whole population (80 model neurons), the mean values of and were
and , with population standard deviations and (respectively). Although these
values do not actually match those obtained from physiology (most reports give values of
between 1 and 2, and close to 1, see [1, 2]), this is to be expected. First, the values of these
parameters probably depend on the specifics of the ICA model, such as its dimensionality
and the noise level; we did not optimize these to attempt to fit physiology. Second, and
more importantly, we do not believe that ICA is an exact model of V1 function. Rather, the
visual cortex would be expected to employ a much more complicated, hierarchical, image

2This was accomplished using a Markov Chain Monte Carlo method, as described in the Ap-
pendix. However, the technical details of this method are not very relevant to this argument.
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.
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our model, CPs are the result of both feedforward (bottom-up)
and feedback (top-down) processing. A stochastic increase in
firing of a sensory neuron does increase the probability of a de-
cision consistent with the activity of this neuron (feedforward).
In the absence of noise correlations caused by the decision
variable (Ecker et al., 2010), the strength of this effect depends
inversely on the number of sensory neurons contributing to the
decision (Shadlen et al., 1996; Haefner et al., 2013).
In our model, CPs at the beginning of the trial are primarily

due to this feedforward pathway, since no coherent top-
down belief has formed yet, i.e., the current belief over D is
only weakly correlated with the final choice. While we assume
an unbiased prior over the correct decision, biased expecta-
tions about the upcoming correct choice generally increase
CPs at stimulus onset, albeit through the feedback pathway.
At any point throughout the trial, the brain’s belief about the
correct decision reflects the accumulated sensory information
presented earlier in the trial. This constitutes prior information
about the likely retinal image at that point, which influences
the brain’s belief about the content of the image and, hence,
the responses of sensory neurons representing this belief. In
general, as the trial progresses and the top-down belief about
the correct decision becomes stronger, CPs are enhanced by
an increasing top-down component and increasingly reflect
the accumulation of evidence about the decision variable (Fig-
ures 6A and 6C). The crucial point here is that the posterior
belief over x at some time t within the trial depends on both
the current observation It, but also all previous observations
I1:::t. Information about these previous observations is commu-
nicated to a neuron representing xt via the posterior belief
over the correct decision, ptðDÞ at time t (Figure 6E, i.e.,
ptðDÞhpðD j I1; ::; ItÞ ).

Second, CPs in our model are largest for those neurons whose
preferred orientation is closest to the task-relevant orientations
(Figure 6B), a relationship in agreement with empirical data (Co-
hen and Newsome, 2009; Bosking and Maunsell, 2011). Since
neurons whose preferred orientation is aligned with the task
axes are also the most informative about the correct decision,
the relationship in Figure 6B implies a correlation between neuro-
metric thresholds and CPs, consistent with empirical findings
(Nienborg et al., 2012). As for noise correlations described
above, our model predictions concern the qualitative shape of
the CP dependence on time and preferred orientation, not their
magnitude. Regardless of the particular parameter values in
our model, CPs increase over time and are largest for neurons
most modulated by the task-relevant stimulus dimension. This
is in agreement with empirical evidence not just for coarse but
also for fine discrimination tasks (Purushothaman and Bradley,
2005) where neurons with the steepest tuning curve slope have
the highest CPs. Third, as for the amplitude of the noise correla-
tions, the magnitude of CPs is related to the degree to which the
brain has learned the task model. This predicts that the CP for
task-relevant neurons should increase with learning, as has
been observed empirically (Law and Gold, 2008).

Correlations between Stimulus and Behavior
The strength of the correlation between stimulus and behavior in
2AFC tasks is typically measured by the PK (Neri et al., 1999;
Ahumada, 2002; Nienborg and Cumming, 2009). The PK quan-
tifies how strongly the evidence in the stimulus is weighted in
the decision-making as a function of the time at which the evi-
dence is presented during the trial. Our model predicts that the
weighting decreases over time (Figure 7A) so that evidence pre-
sented early in the trial has a larger influence on the final decision

A B

C D

Figure 4. Model Predictions for Noise Corre-
lations between the Sensory Neurons in Our
Model
(A) Full correlationmatrix with neurons sorted by their

preferred orientation. The task-relevant orientations

are indicated at 45# and 135#. Only the qualitative

shape is predicted by our model; the overall magni-

tude depends on the particular choice of model

parameters (and can be fit to data).

(B) Same as (A) is shown, but for a cardinal orienta-

tions task.

(C) Correlation coefficients as a function of difference

in preferred orientation between the two neurons in a

pair. Red represents all pairs where each neuron’s

preferred orientation is closest to the same task-

relevant orientation (i.e., supports the same choice).

Blue represents all pairs in which the two neurons are

aligned with different choices. The variability around

the means reflects the measurement noise from

1,000 simulated trials.

(D) Noise correlations recorded between neurons in

area MT for a motion direction task (Cohen and

Newsome, 2008; data are replotted from Figure 4

therein). Since motion direction has a period of 360#

compared to a period of 180# for orientation, differ-

ences in preferred orientation between 0# and 90# in

(C) are comparable to differences in preferred di-

rection between 0# and 180# in (D).
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static display paradigm that allowed us to monitor the
temporal evolution of responses to specific stimulus loca-
tions. We found that neurons in V1 do indeed respond to
illusory contours, e.g., completing the contour induced by
the partial disks shown in Fig. 3, although at a latency
greater than that in V2.

In this experiment, the monkey was asked to fixate at a
spot on the screen, while the Kanizsa square was pre-
sented at different locations on the computer monitor in
different trials. Over successive trials, the responses of
the neurons to the different locations relative to the illu-
sory contour was recorded (Fig. 3). At the beginning of
the experiment, consistent with Von der Heydt’s earlier
report,66 we found that V1 neurons in fact do not respond
to the illusory contours. We then realized that because
the partial disks (pac men) were shown in the periphery,
the monkey might simply be seeing the on and off flashing
of partial disks on the screen without perceiving the illu-
sory square. We took several measures to enhance the
monkey’s attention to the illusory square. First, we
placed the fixation spot inside the illusory square, so that
the monkey was looking at the illusory square. Second,
we presented the stimuli in a sequence: Four black cir-
cular disks appeared first for 400 ms and then turned into
the partial disks, creating an illusion that a white square

had abruptly appeared in front of the circular disks, oc-
cluding them. The sudden onset of the illusory square
also served to capture the attention of the monkey to the
square. Third, we introduced in our presentation a se-
ries of ‘‘teaching’’ stimuli, i.e., real squares that are de-
fined by line or contrast to help the monkey ‘‘see’’ the il-
lusion. Remarkably, in the third session after this shift
in paradigm, we started to find V1 neurons responding to
the illusory contour in the stimulus (Fig. 4).

The neural correlate of the illusory contour signal
emerged in V1 neurons at precisely the same location
where a line or luminance contrast elicited the maximum
response from the cell [Fig. 4(a)]. The response to the il-
lusory contour was delayed relative to the response to the
real contours by 55 ms [Fig. 4(b)], emerging !100 ms af-
ter stimulus onset. The response to the illusory contour
was significantly greater than the response to the con-
trols, including the amodal contour or when the partial
disks were rotated. At the population level, we found
that sensitivity to illusory contours emerged at 65 ms in
V2, 35 ms ahead of V1 [Fig. 4(c) and 4(d)]. A possible ex-
planation is that V2 detects the existence of an illusory
contour by integrating information from a spatially more
global context and then generates a prior P(xv1!xv2) to
constrain the contour inference in V1. The resulting con-

Fig. 4. (a) Spatial profile of a V1 neuron’s response to the contours of both real and illusory squares, in a temporal window 100–150 ms
after stimulus onset. The real or illusory square was placed at different spatial locations relative to the receptive field of the cell. This
cell responded to the illusory contour when it was at precisely the same location where a real contour evoked the maximal response from
the neuron. It also responded significantly better to the illusory contour than to the amodal contour (t test, p ! 0.003) and did not
respond much when the partial disks were rotated. (b) Temporal evolution of the cell’s response to the illusory contour compared with
its response to the real contours of a line square or a white square, as well as to the amodal contour. The onset of the response to the
real contours was at 45 ms, !55 ms ahead the illusory contour response. (c) Population-averaged temporal response of 49 V1 neurons
in the superficial layer to the illusory contours and controls. (d) Population-averaged temporal response of 39 V2 neurons in the su-
perficial layer to the illusory contours and controls. The results show that V2 responds to illusory contour earlier than V1. See Lee and
Nguyen48 for details.
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our model, CPs are the result of both feedforward (bottom-up)
and feedback (top-down) processing. A stochastic increase in
firing of a sensory neuron does increase the probability of a de-
cision consistent with the activity of this neuron (feedforward).
In the absence of noise correlations caused by the decision
variable (Ecker et al., 2010), the strength of this effect depends
inversely on the number of sensory neurons contributing to the
decision (Shadlen et al., 1996; Haefner et al., 2013).
In our model, CPs at the beginning of the trial are primarily

due to this feedforward pathway, since no coherent top-
down belief has formed yet, i.e., the current belief over D is
only weakly correlated with the final choice. While we assume
an unbiased prior over the correct decision, biased expecta-
tions about the upcoming correct choice generally increase
CPs at stimulus onset, albeit through the feedback pathway.
At any point throughout the trial, the brain’s belief about the
correct decision reflects the accumulated sensory information
presented earlier in the trial. This constitutes prior information
about the likely retinal image at that point, which influences
the brain’s belief about the content of the image and, hence,
the responses of sensory neurons representing this belief. In
general, as the trial progresses and the top-down belief about
the correct decision becomes stronger, CPs are enhanced by
an increasing top-down component and increasingly reflect
the accumulation of evidence about the decision variable (Fig-
ures 6A and 6C). The crucial point here is that the posterior
belief over x at some time t within the trial depends on both
the current observation It, but also all previous observations
I1:::t. Information about these previous observations is commu-
nicated to a neuron representing xt via the posterior belief
over the correct decision, ptðDÞ at time t (Figure 6E, i.e.,
ptðDÞhpðD j I1; ::; ItÞ ).

Second, CPs in our model are largest for those neurons whose
preferred orientation is closest to the task-relevant orientations
(Figure 6B), a relationship in agreement with empirical data (Co-
hen and Newsome, 2009; Bosking and Maunsell, 2011). Since
neurons whose preferred orientation is aligned with the task
axes are also the most informative about the correct decision,
the relationship in Figure 6B implies a correlation between neuro-
metric thresholds and CPs, consistent with empirical findings
(Nienborg et al., 2012). As for noise correlations described
above, our model predictions concern the qualitative shape of
the CP dependence on time and preferred orientation, not their
magnitude. Regardless of the particular parameter values in
our model, CPs increase over time and are largest for neurons
most modulated by the task-relevant stimulus dimension. This
is in agreement with empirical evidence not just for coarse but
also for fine discrimination tasks (Purushothaman and Bradley,
2005) where neurons with the steepest tuning curve slope have
the highest CPs. Third, as for the amplitude of the noise correla-
tions, the magnitude of CPs is related to the degree to which the
brain has learned the task model. This predicts that the CP for
task-relevant neurons should increase with learning, as has
been observed empirically (Law and Gold, 2008).

Correlations between Stimulus and Behavior
The strength of the correlation between stimulus and behavior in
2AFC tasks is typically measured by the PK (Neri et al., 1999;
Ahumada, 2002; Nienborg and Cumming, 2009). The PK quan-
tifies how strongly the evidence in the stimulus is weighted in
the decision-making as a function of the time at which the evi-
dence is presented during the trial. Our model predicts that the
weighting decreases over time (Figure 7A) so that evidence pre-
sented early in the trial has a larger influence on the final decision

A B

C D

Figure 4. Model Predictions for Noise Corre-
lations between the Sensory Neurons in Our
Model
(A) Full correlationmatrix with neurons sorted by their

preferred orientation. The task-relevant orientations

are indicated at 45# and 135#. Only the qualitative

shape is predicted by our model; the overall magni-

tude depends on the particular choice of model

parameters (and can be fit to data).

(B) Same as (A) is shown, but for a cardinal orienta-

tions task.

(C) Correlation coefficients as a function of difference

in preferred orientation between the two neurons in a

pair. Red represents all pairs where each neuron’s

preferred orientation is closest to the same task-

relevant orientation (i.e., supports the same choice).

Blue represents all pairs in which the two neurons are

aligned with different choices. The variability around

the means reflects the measurement noise from

1,000 simulated trials.

(D) Noise correlations recorded between neurons in

area MT for a motion direction task (Cohen and

Newsome, 2008; data are replotted from Figure 4

therein). Since motion direction has a period of 360#

compared to a period of 180# for orientation, differ-

ences in preferred orientation between 0# and 90# in

(C) are comparable to differences in preferred di-

rection between 0# and 180# in (D).
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Figure 1: Variance of response versus mean response, on log-log axes, for 4 representative
model neurons. Each dot gives the mean (horizontal axis) and variance (vertical axis) of
the response of the model neuron in question to one particular stimulus. Note that the scale
of responses is completely arbitrary.

We will now explain how both aspects of response variability described in the introduction
can be understood in this framework. First, we will show how a simple mean-variance re-
lationship can arise through sampling in the independent component analysis model. Then,
we will consider how the variability associated with the phenomenon of visual competion
can be interpreted using sampling.

3.1 Example 1: Posterior sampling in ICA

Here, we sample the posterior distribution in the ICA model of natural images, and show
how this might relate to the conspicious variance-mean relation of neural response vari-
ability. First, we used standard ICA methods [17] to estimate a complete basis for the
40-dimensional principal subspace of -pixel natural image patches. Motivated by
the non-negativity of neural firing rates we modified the model to assume single-sided ex-
ponential priors [18], and augmented the basis so that a pair of neurons
coded separately for the positive and negative parts of each original independent compo-
nent. We then took 50 random natural image patches and sampled the posterior distribu-
tions for all 50 patches , taking a total of 1000 samples in each case.2

From the 1000 collected samples, we calculated the mean and variance of the response of
each neuron to each stimulus separately. We then plotted the variance against the mean
independently for each neuron in log-log coordinates. Figure 1 shows the plots from 4
randomly selected neurons. The crucial thing to note is that, as for real neurons [1], the
variance of the response is systematically related to the mean response, and does not seem
to depend on the particular stimulus used to elicit a given mean response. This feature of
neural variability is perhaps the single most important reason to believe that the variability
is meaningless noise inherent in neural firing; yet we have shown that something like this
might arise through sampling in a simple probabilistic model.

Following [1, 2], we fitted lines to the plots, modeling the variance as var mean .
Over the whole population (80 model neurons), the mean values of and were
and , with population standard deviations and (respectively). Although these
values do not actually match those obtained from physiology (most reports give values of
between 1 and 2, and close to 1, see [1, 2]), this is to be expected. First, the values of these
parameters probably depend on the specifics of the ICA model, such as its dimensionality
and the noise level; we did not optimize these to attempt to fit physiology. Second, and
more importantly, we do not believe that ICA is an exact model of V1 function. Rather, the
visual cortex would be expected to employ a much more complicated, hierarchical, image

2This was accomplished using a Markov Chain Monte Carlo method, as described in the Ap-
pendix. However, the technical details of this method are not very relevant to this argument.
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models. Yet identifying the neural correlates of op-
timal internal models has remained a challenge
(see supporting online text).

We addressed this problem by relating evoked
and spontaneous neural activity (EA and SA, re-
spectively) (9) to two key aspects of Bayesian
computations performed with the internal model
(Fig. 1A). The first key aspect is that a statistically
optimal internal model needs to represent its in-
ferences as a probability distribution, the Bayesian
posterior P(features|input, model) (2, 10) describ-
ing the inferred probability that a particular com-
bination of features may underlie the input. Thus,
under the general assumption that the visual cortex
implements such an optimal internal model, EA
should represent the posterior probability distri-
bution for a given input image (2, 11, 12), and SA
should represent the posterior distribution elicited
by a blank stimulus. The second key aspect of a
statistically optimal internal model, under only
mild assumptions about its structure, is that the
posterior represented by SA converges to the prior
distribution, which describes prior expectations
about the frequency with which any given com-
bination of features may occur in the environ-
ment, P(features|model). This is because as the
brightness or contrast of the visual stimulus is
decreased, inferences about the features present

in the input will be increasingly dominated by
these prior expectations (for a formal derivation,
see supporting online text). This effect has been
demonstrated in behavioral studies (3, 13), and it
is also consistent with data on neural responses in
the primary visual cortex (V1) (14). Relating EA
and SA to the posterior and prior distributions
provides a complete, data-driven characterization
of the internal model without making strong
theoretical assumptions about its precise nature.

Crucially, this interpretation of the EA and SA
distributions allowed us to assess statistical opti-
mality of the internal model with respect to an en-
semble of visual inputs, P(input), using a standard
benchmark of the optimality of statistical models
(Fig. 1B) (15). A statistical model of visual inputs
that is optimally adapted to a stimulus ensemble
must have prior expectations that match the actual
frequency with which it encounters different visual
features in that ensemble (16). The degree of mis-
match can be quantified as the divergence between
the average posterior and the prior:

Div½〈Pðfeaturesjiput,modelÞ〉PðinputÞ
∥ PðfeaturesjmodelÞ$ ð1Þ

where the angular brackets indicate averaging
over the stimulus ensemble. A well-calibrated

model will predict correctly the frequency of fea-
ture combinations in actual visual scenes, leading
to a divergence close to zero. However, if the
model is not adapted, or it is adapted to a different
stimulus ensemble from the actual test ensemble,
then a large divergence is expected. As we iden-
tified EA and SA with the posterior and prior
distributions of the internal model, the statistical
optimality of neural responses with respect to a
stimulus ensemble can be quantified by applying
Eq. 1 to neural data, i.e., by computing the di-
vergence between the average distribution of multi-
neural EA (aEA), collected in response to stimuli
sampled from the stimulus ensemble, and the dis-
tribution of SA (17) (Fig. 2A).

Because the internal model of the visual cortex
needs to be adapted to the statistical properties of
natural scenes, Eq. 1 should yield a low diver-
gence between aEA for natural scenes and SA in
the mature visual system. We therefore measured
the population activity within the visual cortex of
awake, freely viewing ferrets in response to natural-
scene movies (aEA) and in darkness (SA) at four
different developmental stages: after eye opening at
postnatal day 29 (P29) to P30, after thematuration
of orientation tuning and long-range horizontal
connections at P44 to P45 (18), and in two groups
of mature animals at P83 to P90 and P129 to P151

Fig. 2. Improving match
between aEA and SA over
development. (A) Spikes
were recorded on 16 elec-
trodes, divided intodiscrete
2-ms bins, and converted
to binary strings, so that
each string described the
activity pattern of cells at a
given time point (top). For
each condition, the histo-
gram of activity patterns
was constructed, and dif-
ferent histograms were
compared by measuring
their divergence (bottom).
(B) Divergence between
the distributions of activity
patterns in movie-aEA (M)
and SA (S), as a function of
age (red bars). As a ref-
erence, the dashed line
shows the average of the
within-condition baselines
computed with within-
condition data split into
two halves (fig. S1). (C)
Frequency of occurrence
of activity patterns under
SA (S, y axis) versusmovie-
aEA (M, x axis) in a young
(left) and adult (right)
animal. Each dot repre-
sents one of the 216 =
65,536 possible binary
activity patterns; color code indicates number of spikes. Black line shows equality. The panels at the left of the plots show examples of neural activity on the 16
electrodes in representative SA and movie-aEA trials for the same animals. Error bars on all figures represent SEM.
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covariance ellipses in Figure 2D; see also Figure 6B). More
generally, the matching of the average posterior to the prior pre-
dicts a match between the distribution of spontaneous activities
and the average distribution of evoked activities (compare the
scatter of empty and filled circles in Figures 2C and 2D; see
also Figure 7) (Berkes et al., 2011a).
In the following, we test each of these key features of our

model in neural data. For this, most parameters of the model
were set according to the statistics of natural image patches,
without regard to neural data, leaving only four free parameters
to determine how sampled feature values under the posterior
were mapped to membrane potentials and firing rates in V1 neu-
rons (Experimental Procedures). Out of these four parameters,
we determined one based on previous literature and tuned
only three to fit specific experimental data recorded in V1. The
experimental data to be reproduced were selected by a set of
predetermined criteria regarding both the type of neural data re-
corded and the stimulus manipulations used in the experiments
(Supplemental Experimental Procedures). Importantly, although
these data included multiple species and conditions, we took a
conservative approach and used a single setting of parameters
across all our simulations (Table S1). For a fair comparison,
in each case model responses were analyzed using the same
statistical methods as those used for the analysis of the corre-
sponding experimental dataset (Supplemental Experimental
Procedures).

Mean Responses, Tuning Curves, and Contrast
Invariance
In order to establish the validity of our model at a basic level, we
first validated the model by reproducing some fundamental
aspects of the mean responses of V1 simple cells. For this, we
followed the method by which tuning curves are measured
experimentally and computed average responses in the model
for full-field grating stimuli with different orientations. As ex-
pected, our model neurons possessed clear orientation tuning
for both membrane potentials and firing rates as found experi-
mentally (Figures S2A and S2B). Importantly, despite the failure
of previous attempts to reconcile sampling-based probabilistic
representations with contrast invariant tuning curves (Pouget
et al., 2013), firing-rate tuning curves in the model also showed
contrast invariance (Skottun et al., 1987); i.e., only their ampli-
tude scaled with contrast, but their width remained roughly con-
stant (Supplemental Experimental Procedures; Figures S2B–
S2E). This meant that, unlike models in which neuronal activity
is proportional to probabilities (Pouget et al., 2013), our model
did not suffer from the unrealistic property of tuning curves
becoming exceedingly narrow at high-contrast levels, as high
certainty was encoded by small noise variability instead (Fig-
ure 2). Moreover, our model also reproduced various character-
istic non-classical receptive field (nCRF) effects, such as cross-
orientation suppression and surround suppression (Bonds,
1989; Cavanaugh, 2001; Schwartz and Simoncelli, 2001; Sup-
plemental Experimental Procedures; Figures S2F–S2H).

A B C D E

Figure 4. Stimulus Dependence of Neural Response Variability
(A) Across-trial SD of peak response amplitudes of a population of cells (circles) for low-contrast gratings plotted against the SD for high-contrast gratings at the

preferred (blue) and non-preferred (red) stimulus orientation.

(B) Spike-count Fano factors (mean matched) for low- and high-contrast stimuli.

(C) Dependence of membrane potential SD on grating orientation at high (solid black line) and low (solid gray line) contrast. For reference, membrane potential SD

during spontaneous activity recorded in response to a blank stimulus is also shown (dashed gray line).

(D and E) Mean and variance (black and blue lines in D) and Fano factor (E) of spike counts as a function of stimulus orientation relative to the preferred orientation

of the cell.

(B)–(E) show population averages (bars or lines), with error bars showing 95%bootstrap confidence intervals (B) and SE (C)–(E), *p < 0.05. Experimental data in (A)

and (C) were reproduced from Finn et al. (2007) with permission fromCell Press (intracellular recordings in anesthetized cat), and (B), (D), and (E) present analyses

of data from Ecker et al. (2010) (extracellular unit recordings in awake macaque).
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stimulus-dependent changes 

in (co)variability

our model, CPs are the result of both feedforward (bottom-up)
and feedback (top-down) processing. A stochastic increase in
firing of a sensory neuron does increase the probability of a de-
cision consistent with the activity of this neuron (feedforward).
In the absence of noise correlations caused by the decision
variable (Ecker et al., 2010), the strength of this effect depends
inversely on the number of sensory neurons contributing to the
decision (Shadlen et al., 1996; Haefner et al., 2013).
In our model, CPs at the beginning of the trial are primarily

due to this feedforward pathway, since no coherent top-
down belief has formed yet, i.e., the current belief over D is
only weakly correlated with the final choice. While we assume
an unbiased prior over the correct decision, biased expecta-
tions about the upcoming correct choice generally increase
CPs at stimulus onset, albeit through the feedback pathway.
At any point throughout the trial, the brain’s belief about the
correct decision reflects the accumulated sensory information
presented earlier in the trial. This constitutes prior information
about the likely retinal image at that point, which influences
the brain’s belief about the content of the image and, hence,
the responses of sensory neurons representing this belief. In
general, as the trial progresses and the top-down belief about
the correct decision becomes stronger, CPs are enhanced by
an increasing top-down component and increasingly reflect
the accumulation of evidence about the decision variable (Fig-
ures 6A and 6C). The crucial point here is that the posterior
belief over x at some time t within the trial depends on both
the current observation It, but also all previous observations
I1:::t. Information about these previous observations is commu-
nicated to a neuron representing xt via the posterior belief
over the correct decision, ptðDÞ at time t (Figure 6E, i.e.,
ptðDÞhpðD j I1; ::; ItÞ ).

Second, CPs in our model are largest for those neurons whose
preferred orientation is closest to the task-relevant orientations
(Figure 6B), a relationship in agreement with empirical data (Co-
hen and Newsome, 2009; Bosking and Maunsell, 2011). Since
neurons whose preferred orientation is aligned with the task
axes are also the most informative about the correct decision,
the relationship in Figure 6B implies a correlation between neuro-
metric thresholds and CPs, consistent with empirical findings
(Nienborg et al., 2012). As for noise correlations described
above, our model predictions concern the qualitative shape of
the CP dependence on time and preferred orientation, not their
magnitude. Regardless of the particular parameter values in
our model, CPs increase over time and are largest for neurons
most modulated by the task-relevant stimulus dimension. This
is in agreement with empirical evidence not just for coarse but
also for fine discrimination tasks (Purushothaman and Bradley,
2005) where neurons with the steepest tuning curve slope have
the highest CPs. Third, as for the amplitude of the noise correla-
tions, the magnitude of CPs is related to the degree to which the
brain has learned the task model. This predicts that the CP for
task-relevant neurons should increase with learning, as has
been observed empirically (Law and Gold, 2008).

Correlations between Stimulus and Behavior
The strength of the correlation between stimulus and behavior in
2AFC tasks is typically measured by the PK (Neri et al., 1999;
Ahumada, 2002; Nienborg and Cumming, 2009). The PK quan-
tifies how strongly the evidence in the stimulus is weighted in
the decision-making as a function of the time at which the evi-
dence is presented during the trial. Our model predicts that the
weighting decreases over time (Figure 7A) so that evidence pre-
sented early in the trial has a larger influence on the final decision

A B

C D

Figure 4. Model Predictions for Noise Corre-
lations between the Sensory Neurons in Our
Model
(A) Full correlationmatrix with neurons sorted by their

preferred orientation. The task-relevant orientations

are indicated at 45# and 135#. Only the qualitative

shape is predicted by our model; the overall magni-

tude depends on the particular choice of model

parameters (and can be fit to data).

(B) Same as (A) is shown, but for a cardinal orienta-

tions task.

(C) Correlation coefficients as a function of difference

in preferred orientation between the two neurons in a

pair. Red represents all pairs where each neuron’s

preferred orientation is closest to the same task-

relevant orientation (i.e., supports the same choice).

Blue represents all pairs in which the two neurons are

aligned with different choices. The variability around

the means reflects the measurement noise from

1,000 simulated trials.

(D) Noise correlations recorded between neurons in

area MT for a motion direction task (Cohen and

Newsome, 2008; data are replotted from Figure 4

therein). Since motion direction has a period of 360#

compared to a period of 180# for orientation, differ-

ences in preferred orientation between 0# and 90# in

(C) are comparable to differences in preferred di-

rection between 0# and 180# in (D).
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Figure 1: The percentage change in weight during an LTP protocol increases as
the noise level increases. The red line is our fit. A All data with frequency 30
Hz or above, corresponding to strong LTP. B Data from one common protocol,
at 50 Hz. Data from [22, 23]. {fig:ltp}

as the presynaptic firing rate rises,

Normalized
Variability

=
PSP Variance

PSP Mean
/ 1p

Presynaptic firing rate
. (10) {eq:rate}

Intuitively, higher presynaptic firing rates give the synapse more opportunities
to update the synaptic weight, allowing the synapse to become more certain,
and hence reducing variability.

We therefore took data from [24], in which they recorded Calcium signals in V1
in vivo under a variety of stimulation conditions, giving an estimate of firing
rate, then were able to patch the same cells in vitro, in order to get the mean and
variance of PSPs. Again, the gradient of the trend line is significantly di↵erent
from 0 (p < 0.003, regressing log variance against log mean and log rate jointly,
and reporting the p-value for the rate, to ensure that any dependence of the
mean on the firing rate does not contaminate our results), but not significantly
di↵erent from our model prediction.

2.2.3 Variance is proportional to the mean

Equation (10) suggests that, if we average over firing rates, PSP variance should
be proportional to PSP mean. It is possible to test this prediction using much
larger datasets than the one used above, because we do not now require corre-
sponding in vivo calcium imaging data. In particular, we used data from [26].

3 Discussion

We showed that synaptic sampling allows neural systems to take uncertainty
about synaptic weights into account during decision making — producing more

6

plasticity ∝ variability
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Figure 1: The percentage change in weight during an LTP protocol increases as
the noise level increases. The red line is our fit. A All data with frequency 30
Hz or above, corresponding to strong LTP. B Data from one common protocol,
at 50 Hz. Data from [22, 23]. {fig:ltp}

as the presynaptic firing rate rises,

Normalized
Variability

=
PSP Variance

PSP Mean
/ 1p

Presynaptic firing rate
. (10) {eq:rate}

Intuitively, higher presynaptic firing rates give the synapse more opportunities
to update the synaptic weight, allowing the synapse to become more certain,
and hence reducing variability.

We therefore took data from [24], in which they recorded Calcium signals in V1
in vivo under a variety of stimulation conditions, giving an estimate of firing
rate, then were able to patch the same cells in vitro, in order to get the mean and
variance of PSPs. Again, the gradient of the trend line is significantly di↵erent
from 0 (p < 0.003, regressing log variance against log mean and log rate jointly,
and reporting the p-value for the rate, to ensure that any dependence of the
mean on the firing rate does not contaminate our results), but not significantly
di↵erent from our model prediction.

2.2.3 Variance is proportional to the mean

Equation (10) suggests that, if we average over firing rates, PSP variance should
be proportional to PSP mean. It is possible to test this prediction using much
larger datasets than the one used above, because we do not now require corre-
sponding in vivo calcium imaging data. In particular, we used data from [26].

3 Discussion

We showed that synaptic sampling allows neural systems to take uncertainty
about synaptic weights into account during decision making — producing more
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firing probability of neuron nk in state fk is given by g(fk):f (uk),
where f (uk) is an appropriate function of the membrane potential
as described below. Thus this function g is closely related to the
function g (called afterpotential) in the spike response model [5] as
well as to the self-excitation kernel in Generalized Linear Models
[42]. In general, different neurons in the network may have
different refractory profiles, which can be modeled by a different
refractory function for each neuron nk. However for the sake of
notational simplicity we assume a single refractory function in the
following.

In the presence of this refractory function g one needs to replace
the sigmoidal activation function s(uk{ log t) by a suitable
function f (uk) that satisfies the condition

exp(u)~f (u)

Pt
g~1 P

t
f~gz1 (1{g(f):f (u))

Pt
f~1 (1{g(f):f (u))

ð11Þ

for all real numbers u. This equation can be derived (see Methods
section Lemma 0) if one requires each neuron nk to represent the
correct distribution p(zkjz\k) over zk conditioned the variables z\k.
One can show that, for any g as above, there always exists a
continuous, monotonic function f which satisfies this equation (see
Lemma 0 in Methods). Unfortunately (11) cannot be solved
analytically for f in general. Hence, for simulations we
approximate the function f for a given g by numerically solving
(11) on a grid and interpolating between the grid points with a
constant function. Examples for several functions g and the
associated f are shown in Figure 2B and Figure 2C respectively.
Furthermore, spike trains emitted by single neurons with these
refractory functions g and the corresponding functions f are

shown in Figure 2D for the case of piecewise constant membrane
potentials. This figure indicates, that functions g that define a
shorter refractory effect lead to higher firing rates and more
irregular firing. It is worth noticing that the standard activation
function s(uk{ log t) is the solution of equation (11) for the
absolute refractory function, i.e., for g(0)~g(1)~1 and g(l)~0
for 1vlƒt.

The transition operator Tk is defined for this model in a very
similar way as before. However, for 1vf’kƒt, when the variable
f’k was deterministically reduced by 1 in the simpler model
(yielding fk~f’k{1), this reduction occurs now only with
probability 1{g(f’k):f (uk). With probability g(f’k):f (uk) the
operator Tk sets fk~t, modeling the firing of another spike of
neuron nk at this time point. The neural computability condition
(4) remains unchanged, e.g., uk~bkz

PK
i~1 Wkizi for a Boltz-

mann distribution. A schema of the stochastic dynamics of this
local state transition operator Tk(fkjf’k,z’\k) is shown in Figure 2A.

This transition operator Tk has the following properties. In
Lemma 0 in Methods it is proven that the unique invariant
distribution of Tk, denoted as q#k(fk,zkjf\k,z\k), gives rise to the
correct marginal distribution over zk, i.e.

Xt

fk~0

q#k(fk,zkjf\k,z\k)~p(zkjz\k):

This means that a neuron whose dynamics is described by Tk

samples from the correct distribution p(zkjz\k) if it receives a static
input from the other neurons in the network, i.e., as long as its
membrane potential uk is constant. Hence the ‘‘local’’ computa-

Figure 2. Neuron model with relative refractory mechanism. The figure shows the transition operator Tk , refractory functions g and
activation functions f for the neuron model with relative refractory mechanism. (A) Transition probabilities of the internal variable fk given by Tk . (B)
Three examples of possible refractory functions g. They assume value 0 when the neuron cannot spike, and return to value 1 (full readiness to fire
again) with different time courses. The value of g at intermediate time points regulates the current probability of firing of neuron nk (see A). The x-axis
is equivalent to the number of time steps since last spike (running from 0 to t from left to right). (C) Associated activation functions f according to
(11). (D) Spike trains produced by the resulting three different neuron models with (hypothetical) membrane potentials that jump at time ½0:25%s from
a constant low value to a constant high value. Black horizontal bars indicate spikes, and the active states zk~1 are indicated by gray shaded areas of
duration t:dt~20ms after each spike. It can be seen from this example that different refractory mechanisms give rise to different spiking dynamics.
doi:10.1371/journal.pcbi.1002211.g002

Neural Dynamics as Sampling

PLoS Computational Biology | www.ploscompbiol.org 6 November 2011 | Volume 7 | Issue 11 | e1002211

~Gibbs sampling by spiking neurons

Buesing et al, PLoS Comput Biol 2011Hinton & Sejnowski, PDP 1986  
Hinton et al, Science 1995

Gibbs sampling by binary neurons
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firing probability of neuron nk in state fk is given by g(fk):f (uk),
where f (uk) is an appropriate function of the membrane potential
as described below. Thus this function g is closely related to the
function g (called afterpotential) in the spike response model [5] as
well as to the self-excitation kernel in Generalized Linear Models
[42]. In general, different neurons in the network may have
different refractory profiles, which can be modeled by a different
refractory function for each neuron nk. However for the sake of
notational simplicity we assume a single refractory function in the
following.

In the presence of this refractory function g one needs to replace
the sigmoidal activation function s(uk{ log t) by a suitable
function f (uk) that satisfies the condition

exp(u)~f (u)

Pt
g~1 P

t
f~gz1 (1{g(f):f (u))

Pt
f~1 (1{g(f):f (u))

ð11Þ

for all real numbers u. This equation can be derived (see Methods
section Lemma 0) if one requires each neuron nk to represent the
correct distribution p(zkjz\k) over zk conditioned the variables z\k.
One can show that, for any g as above, there always exists a
continuous, monotonic function f which satisfies this equation (see
Lemma 0 in Methods). Unfortunately (11) cannot be solved
analytically for f in general. Hence, for simulations we
approximate the function f for a given g by numerically solving
(11) on a grid and interpolating between the grid points with a
constant function. Examples for several functions g and the
associated f are shown in Figure 2B and Figure 2C respectively.
Furthermore, spike trains emitted by single neurons with these
refractory functions g and the corresponding functions f are

shown in Figure 2D for the case of piecewise constant membrane
potentials. This figure indicates, that functions g that define a
shorter refractory effect lead to higher firing rates and more
irregular firing. It is worth noticing that the standard activation
function s(uk{ log t) is the solution of equation (11) for the
absolute refractory function, i.e., for g(0)~g(1)~1 and g(l)~0
for 1vlƒt.

The transition operator Tk is defined for this model in a very
similar way as before. However, for 1vf’kƒt, when the variable
f’k was deterministically reduced by 1 in the simpler model
(yielding fk~f’k{1), this reduction occurs now only with
probability 1{g(f’k):f (uk). With probability g(f’k):f (uk) the
operator Tk sets fk~t, modeling the firing of another spike of
neuron nk at this time point. The neural computability condition
(4) remains unchanged, e.g., uk~bkz

PK
i~1 Wkizi for a Boltz-

mann distribution. A schema of the stochastic dynamics of this
local state transition operator Tk(fkjf’k,z’\k) is shown in Figure 2A.

This transition operator Tk has the following properties. In
Lemma 0 in Methods it is proven that the unique invariant
distribution of Tk, denoted as q#k(fk,zkjf\k,z\k), gives rise to the
correct marginal distribution over zk, i.e.

Xt

fk~0

q#k(fk,zkjf\k,z\k)~p(zkjz\k):

This means that a neuron whose dynamics is described by Tk

samples from the correct distribution p(zkjz\k) if it receives a static
input from the other neurons in the network, i.e., as long as its
membrane potential uk is constant. Hence the ‘‘local’’ computa-

Figure 2. Neuron model with relative refractory mechanism. The figure shows the transition operator Tk , refractory functions g and
activation functions f for the neuron model with relative refractory mechanism. (A) Transition probabilities of the internal variable fk given by Tk . (B)
Three examples of possible refractory functions g. They assume value 0 when the neuron cannot spike, and return to value 1 (full readiness to fire
again) with different time courses. The value of g at intermediate time points regulates the current probability of firing of neuron nk (see A). The x-axis
is equivalent to the number of time steps since last spike (running from 0 to t from left to right). (C) Associated activation functions f according to
(11). (D) Spike trains produced by the resulting three different neuron models with (hypothetical) membrane potentials that jump at time ½0:25%s from
a constant low value to a constant high value. Black horizontal bars indicate spikes, and the active states zk~1 are indicated by gray shaded areas of
duration t:dt~20ms after each spike. It can be seen from this example that different refractory mechanisms give rise to different spiking dynamics.
doi:10.1371/journal.pcbi.1002211.g002
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Fig 1. Basic properties of the network match experimental findings. (a) The Self-Organizing Recurrent Neural Network (SORN) consists of recurrently
connected excitatory (blue) and inhibitory (red) deterministic McCulloch & Pitts threshold neurons. Each input letter (black boxes) stimulates an excitatory
subpopulation. The excitatory recurrent connections are shaped by spike-timing dependent plasticity and synaptic normalization. The excitatory thresholds
are regulated by intrinsic plasticity (see Methods for details). (b) Raster plot of spontaneous activity (no external input) after stimulating the network with ten
randomly alternating letters during plasticity. (c) The inter-spike-interval (ISI) distribution of a randomly selected neuron during spontaneous activity is well-
fitted by an exponential apart from very small ISIs. (c, inset) The distribution of coefficients of variation (CVs) of the ISIs clusters around one, as expected for
exponential ISI distributions, compatible with the experimentally observed Poisson-like spiking [10, 40]. (d) The fraction of excitatory-to-excitatory
connections converges to a stable fraction. (e) Individual weights fluctuate despite the global convergence as observed experimentally [41]. (f) After self-
organization, i.e. at the end of (d), the binned distribution of excitatory-to-excitatory synaptic weights (dots) is well fit by a lognormal distribution (solid line, cp.,
e.g., [42]).

doi:10.1371/journal.pcbi.1004640.g001
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approximate the function f for a given g by numerically solving
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constant function. Examples for several functions g and the
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potentials. This figure indicates, that functions g that define a
shorter refractory effect lead to higher firing rates and more
irregular firing. It is worth noticing that the standard activation
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Three examples of possible refractory functions g. They assume value 0 when the neuron cannot spike, and return to value 1 (full readiness to fire
again) with different time courses. The value of g at intermediate time points regulates the current probability of firing of neuron nk (see A). The x-axis
is equivalent to the number of time steps since last spike (running from 0 to t from left to right). (C) Associated activation functions f according to
(11). (D) Spike trains produced by the resulting three different neuron models with (hypothetical) membrane potentials that jump at time ½0:25%s from
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randomly alternating letters during plasticity. (c) The inter-spike-interval (ISI) distribution of a randomly selected neuron during spontaneous activity is well-
fitted by an exponential apart from very small ISIs. (c, inset) The distribution of coefficients of variation (CVs) of the ISIs clusters around one, as expected for
exponential ISI distributions, compatible with the experimentally observed Poisson-like spiking [10, 40]. (d) The fraction of excitatory-to-excitatory
connections converges to a stable fraction. (e) Individual weights fluctuate despite the global convergence as observed experimentally [41]. (f) After self-
organization, i.e. at the end of (d), the binned distribution of excitatory-to-excitatory synaptic weights (dots) is well fit by a lognormal distribution (solid line, cp.,
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Second, there was an input current Iinput, whose strength was scaled by the (inferred) level
of contrast, z (Eq 6). Note again that while this signal might increase with z, it is a prediction
error, so it has a highly non-trivial relationship with the resulting response. In fact, it can be
shown that the response actually saturates as contrast increases (and results in tuning curves
with contrast invariant width) [11]. This input current specified the probabilistic model by
conveying a prediction error, i.e. the difference between the input image, x, and the image pre-
dicted by the current activities of the excitatory neurons, zAu, plus a term penalizing the
violation of prior expectations about u. While the key focus of our paper is the EI circuit imple-
menting HMC, rather than the specific form for the input (of which the details depend on the
underlying probabilistic model, here the admittedly simplified GSM model), we suggest a
potential implementation of Iinput by a separate population of neurons directly representing
the prediction error (x − zAu) as in theories of predictive coding [18]. Such cells (perhaps in
the lateral geniculate nucleus, LGN) would have an excitatory connection from upstream areas
(the retina), representing the data, and an inhibitory disynaptic connection from the excitatory
cells, u. The output from these cells needs to excite the excitatory cells and inhibit the inhibi-
tory cells of our circuit, which can again be implemented via disynaptic inhibition. This form
of input is particularly well-suited to give strong, long-lasting activation of the EI circuit, as the
increase in excitation reinforces the decrease in inhibition.

Finally, the last term in Eqs (4) and (5) represented noise. Although these dynamics were
clearly simplified in that they were fundamentally linear, such dynamical systems have been
used to model a wide variety of neural processes [47–49]. Previous work has also shown that
neurons combining firing-rate nonlinearities with short-term synaptic plasticity and dendritic
nonlinearities can implement such effectively linear membrane potential dynamics [50, 51].
Moreover, such models have been found to provide a good match to the dynamics of cortical
populations at the level of field potentials [52], calcium signals [53], and firing rate trajectories
[49, 54]. We set the parameters of the network to lie in a biologically realistic regime (Table 1,
Methods).

Oscillations contribute to efficient sampling

When given an input image, our network exhibited oscillatory dynamics due to its intrinsic
excitatory-inhibitory interactions (Fig 4A). Intuitively, these oscillations were useful for infer-
ence as they allowed the network to cover a broad range of plausible interpretations of its

Fig 3. The architecture of the Hamiltonian network. The network consists of two populations of neurons,
excitatory neurons with membrane potential u, and inhibitory neurons v, driven by external input Iinput.
Neurons in the network are recurrently coupled by synaptic weights, Wuu, Wuv, Wvu and Wvv. Red arrows
represent excitation; blue bars represent inhibition.

doi:10.1371/journal.pcbi.1005186.g003

The Hamiltonian Brain
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fast (Hamiltonian) sampling in E/I networks

input within each oscillation cycle. In order to assess more rigorously the computational use of
these oscillations, we compared our network to a non-oscillatory counterpart, called Langevin
sampling [55] (Methods). For a fair comparison of the two samplers, we set them up to sample
from the same posterior, and we kept the noise level ρ the same in them.

The Langevin sampler was constructed by setting the recurrent weights in our network (W
matrices) to zero. Although, in general, a Langevin sampler can still have recurrent connectiv-
ity, at least among the principal cells (by interpreting the dependence of Iinput on u as recurrent
connections [56]), these recurrent connections are necessarily symmetric and therefore funda-
mentally different in nature from the EI interactions that we consider here. As a consequence,
Langevin dynamics showed prominent random walk-like behaviour without oscillations (Fig
4B). Comparing the autocorrelation functions for the Hamiltonian and Langevin samplers
revealed that while their autocorrelation functions decayed at similar rates (controlled by the
timescale of the stochastic, Langevin component), the HMC had an additional, oscillating
component, allowing it to rapidly explore the state space (Fig 4C).

The oscillatory behaviour of our HMC sampler allowed it to explore a larger volume of
state space in a fixed time interval than Langevin sampling (Fig 4D and 4E). To compare the
sampling performance of HMC and Langevin dynamics rigorously, we measured for both of
them the error between a sample-based estimate of the posterior mean and the true mean of
the posterior. The samples from the Hamiltonian sampler took very little time to give a good
estimate of the mean (73 ms to get the mean square error to the level obtainable by a single
statistically fair sample), whereas samples from the Langevin model took*4 times longer

Fig 4. The Hamiltonian sampler is more efficient than a Langevin sampler. A, B. Example membrane
potential traces for a randomly selected neuron in the Hamiltonian network (A) and the Langevin network (B).
C. Solid lines: the autocorrelation of membrane potential traces in A and B, for Hamiltonian (red) and
Langevin samplers (blue). Dashed lines: the autocorrelation of the joint (log) probability for Hamiltonian (red)
and Langevin samplers (blue). Note that for the Hamiltonian sampler, the joint probability is over both u and v.
D, E. Joint membrane potential traces from two randomly selected neurons in the Hamiltonian network (D)
and the Langevin network (E), colour indicates time (from red to green, spanning 25 ms), grey scale map
shows the (logarithm of the) underlying posterior (its marginal over the two dimensions shown). F. Normalised
mean square error (MSE) between the true mean and the mean estimate from samples taken over a time t for
the Langevin (blue) and Hamiltonian dynamics (red), with 100 repetitions (mean ± 2 s.e.m.).

doi:10.1371/journal.pcbi.1005186.g004

The Hamiltonian Brain
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Diffusion in an Energy Model. Our finding that bistable perception
behaves like a Bayesian sampling process raises the issue as to
how neurons could implement such a process. We first show that
implementing the multiplicative rule is surprisingly straightfor-
ward with energy models. In Results, Sampling with Realistic
Neural Circuits, we will present a neural instantiation of this
conceptual framework. We model the dynamics of two neural
populations, A and B, whose states are described by their firing
rates rA and rB, respectively (Fig. 4A). The reduced dynamics
tracks the difference between the firing rates, r = rA − rB, where
r > 0 corresponds to percept A. This variable obeys (Eq. 2)

τ
d
dt
r ¼ − 4rðr2 − 1Þ þ gðIλ; IvÞ þ nðtÞ; [2]

where g(Iλ, Iv) is a bias provided by the inputs and n(t) is a filtered
white noise with variance σ2 (27) (SI Methods). The first term on
the right-hand side ensures that the activity difference, r, hovers
around the centers of the two energy wells (Fig. 4B). The bias term
measures the combined strength of the cues, which is a function of
the individual strengths Iλ and Iv favoring percept A from the
wavelength and speed cues, respectively. The function gðIλ; IvÞ is
chosen such that it is zero when the two cues are neutral (zero

currents) and positive when the two cues favor percept A (the two
currents are positive). The dynamics ofEq. 2 can be viewed as a noisy
descent over the energy landscape EðrÞ ¼ r2ðr2 − 2Þ− gðIλ; IvÞr,
which is symmetrical (Fig. 4B, black line) when the two cues are
neutral and negatively tilted (Fig. 4B, gray line) when the cues favor
perceptA. The resulting dynamics effectively draws samples from an
underlying probability distribution that depends on the input cur-
rents (a process known as Langevin Monte Carlo sampling) (28).
To model the experimental data that we have described, we

need a form of sampling that obeys the multiplicative rule.
Whether the network obeys the rule or not depends critically on
the function gðIλ; IvÞ. We consider here the family of functions
described by gðIλ; IvÞ ¼ Iλ þ Iv þ εðI2λ Iv þ I2v IλÞ, where εmeasures
the strength of the nonlinearity. Similar nonlinear functional
dependences on the input currents naturally arise in neuronal
networks with nonlinear activation functions (Results, Sampling
with Realistic Neural Circuits).
For a value of ε different from zero, the dynamical system does

not follow the multiplicative rule (Fig. 4D). In contrast, if we set
ε to zero, such that gðIλ; IvÞ ¼ Iλ þ Iv, the system now obeys the
multiplicative rule (Fig. 4E). This result can be derived analyti-
cally by computing the mean dominance duration of each per-
cept, which corresponds to the mean escape time from one of the
energy wells (SI Methods). We can then show that the fraction of
dominance of population A for ε equal to zero is a sigmoid
function of the sum of the inputs (Eq. 3)

fλv ¼ f ðs ¼ A j Iλ; IvÞ ¼
1

1þ e− 2ðIλþIvÞ=σ2eff
∝ e ðIλþIvÞ=σ2eff; [3]

where σ2eff is the effective noise in the system and is proportional
to σ2. Note that when only one cue is nonneutral, fi ∝ eIi=σ

2
eff (i= λ,

v), and when both cues are nonneutral, fλv ∝ eðIλþIvÞ=σ2eff . There-
fore, the fractions are related through fλv ∝ fλ × fv, and after
normalization, they follow the multiplicative rule (Eq. 1). Fig. 4F
shows that Eq. 3 is indeed satisfied by the diffusion model, be-
cause the fraction of dominance of percept A obtained from
numerical simulations as a function of the total input current
(Fig. 4F, blue line) is a sigmoid function (Fig. 4F, red line). This

C D

A B

Fig. 2. Experimental and predicted fractions of dominance in the wave-
length and speed cue combination experiment. (A) Fraction of dominance of
percept A (i.e., grating α is behind grating β) as a function of the wavelength
difference between gratings α and β (Δλ = λα − λβ) for three different speed
differences (Δv = vα − vβ) in the congruent condition (both cues favored the
same depth ordering). Data are averaged across subjects, and the error bars
correspond to SEM across subjects. Experimental observations (red and black)
and predictions from the multiplicative rule (blue circles) (Eq. 1) are shown.
The predictions from the multiplicative rule were computed using the ex-
perimental data from the conditions in which only one cue was nonneutral
(open circles). The black open circles correspond to the fractions measured
when the two cues were neutral. The predictions are displaced slightly right
in relation to the experimental data (filled red circles) to allow better visual
comparison. (B) Same as in A but for the incongruent condition (the cues
favored opposite percepts). (C) Predicted fractions of dominance for the
multiplicative rule combining the data from the congruent (C; light blue) and
incongruent (IC; dark blue) conditions from A and B as a function of the
empirical fractions. (D) Same as in C but for the strongest cue take all rule
(brown) and a rate-based model with nonlinear (orange) and linear (blue)
input neurons.

C D

A B

Fig. 3. Experimental and predicted fractions of dominance in the wave-
length and disparity cue combination experiment. A–D are the same as in
Fig. 2 but with speed replaced by disparity.
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Figure 2: Perceptual switching dynamics. (A) Simulated time course of bista-
bility. Plotted on the y-axis is the number of nodes with value greater than 0.5.
The horizontal lines show the thresholds for a perceptual switch. (B) Distribu-
tion of simulated dominance durations (mean-normalized) for MRF with lattice
topology. Curves show gamma distributions fitted to simulated (with parame-
ter values shown on the right) and empirical data, replotted from Mamassian
and Goutcher (2005).

dominance durations fall naturally out of MCMC operating on a spatially
smooth MRF.

4.2 Piecemeal Rivalry and Traveling Waves. Another empirical obser-
vation about spatiotemporal dynamics in rivalry is that stability is often
incomplete across the visual field, producing piecemeal rivalry, in which
one portion of the visual field looks like the image in one eye, while another
portion looks like the image in the other eye (Mueller & Blake, 1989). One
intriguing feature of these piecemeal percepts is the phenomenon known
as traveling waves: subjects tend to perceive a perceptual switch as a wave
propagating over the visual field (Wilson, Blake, & Lee, 2001; Lee, Blake, &
Heeger, 2005): the suppressed stimulus becomes dominant in an isolated lo-
cation of the visual field and then gradually spreads. These traveling waves
reveal an interesting local dynamics during an individual switch itself.

Demonstrating the dynamics of traveling waves within patches of the
percept requires a different method of probing perception instead of asking
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Neural Circuits, we will present a neural instantiation of this
conceptual framework. We model the dynamics of two neural
populations, A and B, whose states are described by their firing
rates rA and rB, respectively (Fig. 4A). The reduced dynamics
tracks the difference between the firing rates, r = rA − rB, where
r > 0 corresponds to percept A. This variable obeys (Eq. 2)
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dt
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where g(Iλ, Iv) is a bias provided by the inputs and n(t) is a filtered
white noise with variance σ2 (27) (SI Methods). The first term on
the right-hand side ensures that the activity difference, r, hovers
around the centers of the two energy wells (Fig. 4B). The bias term
measures the combined strength of the cues, which is a function of
the individual strengths Iλ and Iv favoring percept A from the
wavelength and speed cues, respectively. The function gðIλ; IvÞ is
chosen such that it is zero when the two cues are neutral (zero

currents) and positive when the two cues favor percept A (the two
currents are positive). The dynamics ofEq. 2 can be viewed as a noisy
descent over the energy landscape EðrÞ ¼ r2ðr2 − 2Þ− gðIλ; IvÞr,
which is symmetrical (Fig. 4B, black line) when the two cues are
neutral and negatively tilted (Fig. 4B, gray line) when the cues favor
perceptA. The resulting dynamics effectively draws samples from an
underlying probability distribution that depends on the input cur-
rents (a process known as Langevin Monte Carlo sampling) (28).
To model the experimental data that we have described, we

need a form of sampling that obeys the multiplicative rule.
Whether the network obeys the rule or not depends critically on
the function gðIλ; IvÞ. We consider here the family of functions
described by gðIλ; IvÞ ¼ Iλ þ Iv þ εðI2λ Iv þ I2v IλÞ, where εmeasures
the strength of the nonlinearity. Similar nonlinear functional
dependences on the input currents naturally arise in neuronal
networks with nonlinear activation functions (Results, Sampling
with Realistic Neural Circuits).
For a value of ε different from zero, the dynamical system does

not follow the multiplicative rule (Fig. 4D). In contrast, if we set
ε to zero, such that gðIλ; IvÞ ¼ Iλ þ Iv, the system now obeys the
multiplicative rule (Fig. 4E). This result can be derived analyti-
cally by computing the mean dominance duration of each per-
cept, which corresponds to the mean escape time from one of the
energy wells (SI Methods). We can then show that the fraction of
dominance of population A for ε equal to zero is a sigmoid
function of the sum of the inputs (Eq. 3)

fλv ¼ f ðs ¼ A j Iλ; IvÞ ¼
1

1þ e− 2ðIλþIvÞ=σ2eff
∝ e ðIλþIvÞ=σ2eff; [3]

where σ2eff is the effective noise in the system and is proportional
to σ2. Note that when only one cue is nonneutral, fi ∝ eIi=σ

2
eff (i= λ,

v), and when both cues are nonneutral, fλv ∝ eðIλþIvÞ=σ2eff . There-
fore, the fractions are related through fλv ∝ fλ × fv, and after
normalization, they follow the multiplicative rule (Eq. 1). Fig. 4F
shows that Eq. 3 is indeed satisfied by the diffusion model, be-
cause the fraction of dominance of percept A obtained from
numerical simulations as a function of the total input current
(Fig. 4F, blue line) is a sigmoid function (Fig. 4F, red line). This

C D

A B

Fig. 2. Experimental and predicted fractions of dominance in the wave-
length and speed cue combination experiment. (A) Fraction of dominance of
percept A (i.e., grating α is behind grating β) as a function of the wavelength
difference between gratings α and β (Δλ = λα − λβ) for three different speed
differences (Δv = vα − vβ) in the congruent condition (both cues favored the
same depth ordering). Data are averaged across subjects, and the error bars
correspond to SEM across subjects. Experimental observations (red and black)
and predictions from the multiplicative rule (blue circles) (Eq. 1) are shown.
The predictions from the multiplicative rule were computed using the ex-
perimental data from the conditions in which only one cue was nonneutral
(open circles). The black open circles correspond to the fractions measured
when the two cues were neutral. The predictions are displaced slightly right
in relation to the experimental data (filled red circles) to allow better visual
comparison. (B) Same as in A but for the incongruent condition (the cues
favored opposite percepts). (C) Predicted fractions of dominance for the
multiplicative rule combining the data from the congruent (C; light blue) and
incongruent (IC; dark blue) conditions from A and B as a function of the
empirical fractions. (D) Same as in C but for the strongest cue take all rule
(brown) and a rate-based model with nonlinear (orange) and linear (blue)
input neurons.

C D

A B

Fig. 3. Experimental and predicted fractions of dominance in the wave-
length and disparity cue combination experiment. A–D are the same as in
Fig. 2 but with speed replaced by disparity.
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Figure 2: Perceptual switching dynamics. (A) Simulated time course of bista-
bility. Plotted on the y-axis is the number of nodes with value greater than 0.5.
The horizontal lines show the thresholds for a perceptual switch. (B) Distribu-
tion of simulated dominance durations (mean-normalized) for MRF with lattice
topology. Curves show gamma distributions fitted to simulated (with parame-
ter values shown on the right) and empirical data, replotted from Mamassian
and Goutcher (2005).

dominance durations fall naturally out of MCMC operating on a spatially
smooth MRF.

4.2 Piecemeal Rivalry and Traveling Waves. Another empirical obser-
vation about spatiotemporal dynamics in rivalry is that stability is often
incomplete across the visual field, producing piecemeal rivalry, in which
one portion of the visual field looks like the image in one eye, while another
portion looks like the image in the other eye (Mueller & Blake, 1989). One
intriguing feature of these piecemeal percepts is the phenomenon known
as traveling waves: subjects tend to perceive a perceptual switch as a wave
propagating over the visual field (Wilson, Blake, & Lee, 2001; Lee, Blake, &
Heeger, 2005): the suppressed stimulus becomes dominant in an isolated lo-
cation of the visual field and then gradually spreads. These traveling waves
reveal an interesting local dynamics during an individual switch itself.

Demonstrating the dynamics of traveling waves within patches of the
percept requires a different method of probing perception instead of asking

idiosyncrasies in decision making

Vul & Pashler, Psych Sci 2008  
Vul et al, Cog Sci 2014

 The Crowd Within

 Fig. 1. Experimental results. The bar graph (a) presents mean squared error for the first and second guesses and their average, as a function of
 condition (immediate vs. 3-week delay). The line graph (b) shows mean squared error as a function of number of guesses averaged together. The data
 points show results for guesses from independent subjects (blue), a single subject in the immediate condition (red), and a single subject in the delayed
 condition (green). The blue curve shows convergence to the population bias, which is indicated by the horizontal blue line (the error of the guess
 averaged across all people). Through interpolation (black lines), we computed the value of two guesses from one person relative to two guesses from
 independent people, for both the immediate and the delayed conditions. The shaded regions are bootstrapped 90% confidence intervals. Error bars
 represent standard errors of the means.

 p < .01, and of the second guess, t(U2) = 6.59, p < .01. This
 result indicates that subjects did not produce a second guess
 by simply perturbing the first; rather, the error of the two guesses

 was somewhat independent. This benefit of averaging cannot
 be attributed to subjects' finding more information between
 guesses, because second guesses were less accurate than first
 guesses (see Fig. la) in both the immediate condition, £(254) =
 3.6,/? < .01, and the delayed condition, £(172) = 2.8, p < .01.
 Moreover, the benefit of averaging was greater when the second

 guess was delayed by 3 weeks than when it was immediate;
 that is, the difference in error between the first guess and the

 average was greater in the delayed condition than in the im-
 mediate condition, £(426) = 2.12,p < .05. The 95% confidence
 intervals for percentage of error reduced relative to the first
 guess were [2.5%, 10.4%] in the immediate condition and
 [11.6%, 20.4%] in the delayed condition. Thus, one benefits
 from polling the "crowd" within, and the inner crowd grows
 more effective (independent) when more time elapses between
 guesses.

 We compared the efficacy of within-person averaging and
 across-person averaging via hyperbolic interpolation (see Fig. lb).

 The error of the average guess across all people corresponds
 to the bias of the distribution of beliefs in the population.
 According to the central limit theorem, if different subjects'

 deviations from the group bias are independent, the mean
 squared error of the average of N guesses from N people should

 be a hyperbola that converges to the group bias as N goes to
 infinity. This hyperbola fits the across-person averages perfectly

 (R2 = 1). However, TV guesses from one person are not as ben-

 eficial as N guesses from TV people. The reduction in mean
 squared error from averaging N guesses from one person can be

 described as 1/[1 + X(N - 1)], where X is the proportion of an

 additional guess from another person that an additional guess
 from the same person is worth; when X, is 1, averaging in a second

 guess from the same person confers the same benefit as aver-
 aging in a second guess from a different person; when X is 0,
 averaging in a second guess from the same person confers no
 benefit at all. The value of X can be estimated by interpolating

 the benefit of within-person averaging onto the hyperbola rep-

 resenting the benefit of across-person averaging. Thus, we
 computed how many different-person guesses one would need to

 average together to attain the same error as in the average of two

 guesses from one person. This value is 1.11 (X = 0.11) for two
 immediate guesses and 1.32 (X = 0.32) for two delayed guesses.

 Simply put, you can gain about l/10th as much from asking

 yourself the same question twice as you can from getting a
 second opinion from someone else, but if you wait 3 weeks, the

 benefit of reasking yourself the same question rises to 1/3 the

 value of a second opinion. One potential explanation of the cost

 of immediacy is that subjects are biased by their first response

 to produce less independent samples (a delay mitigates this
 anchoring effect).
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probability distribution spatio-temporal neural activity patterns

on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xi

m characterizing the ith neuron
in the mth memory trace. Here, we treat xi

m as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xi

m characterizing the ith neuron
in the mth memory trace. Here, we treat xi

m as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.

1678 VOLUME 8 [ NUMBER 12 [ DECEMBER 2005 NATURE NEUROSCIENCE

ART ICLES

©
2

0
0

5
 N

a
tu

re
 P

u
b

li
s

h
in

g
 G

ro
u

p
  

h
tt

p
:/

/w
w

w
.n

a
tu

re
.c

o
m

/n
a
tu

re
n

e
u

ro
s
c
ie

n
c
e

r1 r2 r3 r4 rN

y

x

y1

y2
P(y|x)

r(t)

y1

r1(t)
r2(t)

y2

r(t,x)

r

x

sampling-based
r ⇠ P(y = r|x)

http://www.eng.cam.ac.uk/~m.lengyel


Máté Lengyel  |  Neural representations of uncertainty http://www.eng.cam.ac.uk/~m.lengyelBernstein workshop “Neural sampling”, Göttingen, 12 September 2017

A SIMPLE TAXONOMY OF PROBABILISTIC REPRESENTATIONS

12

probability distribution spatio-temporal neural activity patterns

on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xi

m characterizing the ith neuron
in the mth memory trace. Here, we treat xi

m as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with

i = 1

1

0.2

0.1

–0.1
–2 0 2

0

0

–1
–50 50S

yn
a
p
tic

 w
e
ig

h
t 
ch

a
n
g
e

Spike timing–dependent plasticity

0

X1W1N

W
N4

W13

W12 W32

X2 X3 X4 X
N

2 3 4 N

2

Delay

Advance

P
h
a
se

 r
e
sp

o
n
se

 (
ra

d
)

Coupling function

P
h
a
se

 r
e
sp

o
n
se

 (
ra

d
)

Phase response curves

Phase of EPSP (rad)

1

0

–1
–2 0 2

φpre– φpost (rad)

tpre– tpost (ms)

a b

dc

Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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probability distribution spatio-temporal neural activity patterns

on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xi

m characterizing the ith neuron
in the mth memory trace. Here, we treat xi

m as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with

i = 1

1

0.2

0.1

–0.1
–2 0 2

0

0

–1
–50 50S

yn
a
p
tic

 w
e
ig

h
t 
ch

a
n
g
e

Spike timing–dependent plasticity

0

X1W1N

W
N4

W13

W12 W32

X2 X3 X4 X
N

2 3 4 N

2

Delay

Advance

P
h
a
se

 r
e
sp

o
n
se

 (
ra

d
)

Coupling function

P
h
a
se

 r
e
sp

o
n
se

 (
ra

d
)

Phase response curves

Phase of EPSP (rad)

1

0

–1
–2 0 2

φpre– φpost (rad)

tpre– tpost (ms)

a b

dc

Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xi

m characterizing the ith neuron
in the mth memory trace. Here, we treat xi

m as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xi

m characterizing the ith neuron
in the mth memory trace. Here, we treat xi

m as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xi

m characterizing the ith neuron
in the mth memory trace. Here, we treat xi

m as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xi

m characterizing the ith neuron
in the mth memory trace. Here, we treat xi

m as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xi

m characterizing the ith neuron
in the mth memory trace. Here, we treat xi

m as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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decoding neural responses yields a distribution: P(y|r) / P(r|y) P(y)

predicts that the response of a multisensory population to
a multisensory stimulus is equal to the sum of its
responses to each of the corresponding unisensory stimuli
(plus or minus a constant, because, in a PPC, constant
terms have no effect on the posterior encoded in a
population [35]). Recent experiments in multisensory
integration have revealed that the majority of multisen-
sory neurons do indeed exhibit this form of additivity
[36]. If this finding holds in awake animals performing
optimal cue integration, this would provide strong support
for a Poisson-like PPC.

Cue integration is only one of many probabilistic com-
putations that the brain has to perform. Others include
integrating information over time in perceptual decision
making [37], deciding whether multisensory stimuli come
from the same physical object [38], running a Kalman
filter in sensorimotor control [39!], and combining infor-
mation from many locations in visual search. Recent
studies have even considered situations in which the
stimulus varies on a time scale comparable to the time

scale of interspike intervals. In this case, the timing of
individual spikes becomes crucial [28,40!]. (Even for
constant stimuli, ignoring individual spike timing can
incur information loss [41].) More complex neural net-
work schemes have also been designed for (hierarchical)
Bayesian inference [27,29,42,52,53], but these were not
meant to describe actual neurons, or there is little exper-
imental data to test their validity.

Binary choice
As we have just pointed out, Bayesian inference can be
applied to a wide variety of problems, and this is particu-
larly true for decision making. When deciding between
two (or more) alternatives, the relevant quantity is the
probability that each of the alternatives is the correct
decision given the available evidence. Studies with awake
monkeys have revealed that the responses of LIP neurons
might indeed encode this probability [30]. In the most
recent of these, monkeys were sequentially presented
with four shapes, each of which provided probabilistic
evidence that choosing one of two targets would lead to

Spiking networks for Bayesian inference and choice Ma, Beck and Pouget 219

Figure 1

Comparison of explicit probability coding (EPC) and probabilistic population coding (PPC) for populations with bell-shaped (a–c) or monotonic (d–f)
tuning curves and independent Poisson noise. (a, d) Population patterns of activity (averaged over 10 trials for clarity) when the actual stimulus had
value 50 (arbitrary units). Example tuning curves are shown in the insets, and neurons are ordered by their tuning curves (in d, the ‘preferred stimulus’ is
the stimulus for which the tuning curve has the highest slope). The same population is shown for low (blue) and high (red) gain. (b, c, e, f) Distributions
over the stimulus encoded in the populations on a single trial, using EPC (b, e) or PPC (c, f), when gain is low (blue) or high (red). All distributions will
vary somewhat from trial to trial. In PPC, higher neural gain yields a sharper distribution, thus higher certainty (see c, f). In EPC, gain has no effect on
certainty (see b, e) and the distributions do not peak close to the actual value of the stimulus when tuning curves are monotonic (compare e, f).
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over the stimulus encoded in the populations on a single trial, using EPC (b, e) or PPC (c, f), when gain is low (blue) or high (red). All distributions will
vary somewhat from trial to trial. In PPC, higher neural gain yields a sharper distribution, thus higher certainty (see c, f). In EPC, gain has no effect on
certainty (see b, e) and the distributions do not peak close to the actual value of the stimulus when tuning curves are monotonic (compare e, f).
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reward [43!!]. The weight of the evidence and the
favored target were different for different shapes. It
was found that monkeys assigned subjective weights to
the shapes that were close to the shapes’ true weights.
Moreover, firing rates of LIP neurons varied linearly with
the log likelihood ratio in each epoch of a trial.

At first sight, these experiments suggest that neurons
respond in proportion to log likelihood ratios, or log
probabilities (see Box 2). There are, however, a variety
of arguments suggesting that this is unlikely to be the case
[22!!,44]; for instance, it is not always possible to recover
the log odds of a decision solely from LIP activity under
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Figure 3

Schematic of probabilistic population coding for perceptual computation. One or multiple stimuli elicit population patterns of activity. Each pattern
encodes a probability distribution over the stimulus through Bayes’ rule. In perceptual tasks like cue combination, decision making, or visual search,
these probability distributions have to be manipulated in specific ways to achieve optimality. Now the key problem is to establish a ‘dictionary’
between such probabilistic computations and neural operations on population patterns of activity, assuming a form of neural variability. Using those
neural operations, the brain will retain full probabilistic information about the variable(s) of interest at all intermediate stages of computation. Eventually,
a motor action is generated or a high-level judgment is made (for example, about target presence in a visual search task).

Figure 2

Optimal cue integration with probabilistic population codes [22!!]. The cues elicit activity in input populations r1 and r2, indicated by green and blue dots
(neurons are ordered by their preferred stimulus). A simple linear combination of the population patterns of activity, r3 =W1r1 +W2r2, guarantees optimal
cue integration, if neural variability is Poisson-like. The dialog boxes show the probability distributions over the stimulus encoded in each population
on a single trial. Optimal cue integration is characterized by a multiplication of probability distributions over the stimulus, p(sjr3) / p(sjr1)p(sjr2). The
synaptic weight matrices W1 and W2 depend on the statistics of the input populations, but do not have to be adjusted over trials.
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predicts that the response of a multisensory population to
a multisensory stimulus is equal to the sum of its
responses to each of the corresponding unisensory stimuli
(plus or minus a constant, because, in a PPC, constant
terms have no effect on the posterior encoded in a
population [35]). Recent experiments in multisensory
integration have revealed that the majority of multisen-
sory neurons do indeed exhibit this form of additivity
[36]. If this finding holds in awake animals performing
optimal cue integration, this would provide strong support
for a Poisson-like PPC.

Cue integration is only one of many probabilistic com-
putations that the brain has to perform. Others include
integrating information over time in perceptual decision
making [37], deciding whether multisensory stimuli come
from the same physical object [38], running a Kalman
filter in sensorimotor control [39!], and combining infor-
mation from many locations in visual search. Recent
studies have even considered situations in which the
stimulus varies on a time scale comparable to the time

scale of interspike intervals. In this case, the timing of
individual spikes becomes crucial [28,40!]. (Even for
constant stimuli, ignoring individual spike timing can
incur information loss [41].) More complex neural net-
work schemes have also been designed for (hierarchical)
Bayesian inference [27,29,42,52,53], but these were not
meant to describe actual neurons, or there is little exper-
imental data to test their validity.

Binary choice
As we have just pointed out, Bayesian inference can be
applied to a wide variety of problems, and this is particu-
larly true for decision making. When deciding between
two (or more) alternatives, the relevant quantity is the
probability that each of the alternatives is the correct
decision given the available evidence. Studies with awake
monkeys have revealed that the responses of LIP neurons
might indeed encode this probability [30]. In the most
recent of these, monkeys were sequentially presented
with four shapes, each of which provided probabilistic
evidence that choosing one of two targets would lead to
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Figure 1

Comparison of explicit probability coding (EPC) and probabilistic population coding (PPC) for populations with bell-shaped (a–c) or monotonic (d–f)
tuning curves and independent Poisson noise. (a, d) Population patterns of activity (averaged over 10 trials for clarity) when the actual stimulus had
value 50 (arbitrary units). Example tuning curves are shown in the insets, and neurons are ordered by their tuning curves (in d, the ‘preferred stimulus’ is
the stimulus for which the tuning curve has the highest slope). The same population is shown for low (blue) and high (red) gain. (b, c, e, f) Distributions
over the stimulus encoded in the populations on a single trial, using EPC (b, e) or PPC (c, f), when gain is low (blue) or high (red). All distributions will
vary somewhat from trial to trial. In PPC, higher neural gain yields a sharper distribution, thus higher certainty (see c, f). In EPC, gain has no effect on
certainty (see b, e) and the distributions do not peak close to the actual value of the stimulus when tuning curves are monotonic (compare e, f).
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Figure 1. Neural arithmetics corresponding to different representational schemes. A.
Predictive coding: the difference between the input and a prediction is computed, and
the resulting prediction error is represented in the response of neurons. B. Probability
coding: the response of each neuron represents the posterior probability associated
with a particular value (or range of values) of the latent variable(s). Thus, to compute
their firing rate, neurons need to multiply their inputs, representing the likelihood, and
the prediction, representing the prior. C. Log-probability coding: the response of each
neuron represents the logarithm of the posterior probability associated with a particular
value of the latent variable(s), thus it needs to sum its inputs, representing the log
likelihood, and the prediction, representing the log prior. D. Direct variable coding:
the response of each neuron represents the value of a different latent variable. The
resulting population codes typically interpolate between what would be dictated by
inputs or predictions alone.
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Figure 2: Experimental design. A. In each trial, the subject made an orientation estimation judge-
ment and provided information about the orientation and their subjective uncertainty by drawing a
single stroke on a tablet. See text for details. B. Estimation error ("

x

) between the true and reported
orientations, and level of uncertainty (�2

x

) were the dependent variables in the experiment.

the subjective assessment of uncertainty in their estimate by drawing a line on a tablet with a sty-
lus. The orientation of the line indicated the estimated orientation of the line segment, while the
length of the line corresponded to subjective uncertainty. A longer line indicated less certainty to
avoid the possible confound in measuring error-uncertainty correlations as shorter segments provide
inherently less precision for orientation. After the subject responded, the mask and cue disappeared
and a small segment appeared at the tested location with the orientation chosen by the subject and
with a gray wedge around the line segment with a width (subtended angle) corresponding to the
reported uncertainty. (The true orientation of the segment was not displayed.) This feedback display
appeared for 500 msec, after which the new trial began.

To enhance the quality of subjective uncertainty estimation, a scoring function was used to assess
subjects’ performance at each trial. Subjects were told that their goal was to maximize their score
which was calculated by combining the accuracy and certainty of their response. To calculate the
scores, we used the log probability of the true stimulus orientation under a circular Gaussian (von
Mises) distribution defined by the subject’s response. This scoring function can be maximised if the
subject’s uncertainty report reflects their true subjective uncertainty which in turn is predictive of the
errors they are making [18]. To prevent subjects from developing simple feedback-based strategies
while keeping them alert, subjects received only grouped feedback after every 10 trials in the form of
an average score. Subjects completed 3-4 sessions of 900 trials across multiple days. To familiarize
themselves with the procedure and to facilitate the precision of mapping from uncertainty to line
length, prior to each test session subjects had a practice session with 50 trials during which they
received feedback after every trial including the true orientation of the cued segment. Data from
these trials was not included in the analyses.

4 Results

We collected data from a total of N=5 subjects, four of whom were naive while the last one was
informed about the goal of the experiment. We found no difference in performance between the
naive and informed subjects confirming that the paradigm measured direct reactions of the subjects
without much cognitive influence.

4.1 Basic measures and controls

First, we checked whether in our paradigm we measured the relevant aspects of human performance.
In order to measure the typical pattern of trial-by-trial error and uncertainty, the stimuli must cover
the entire space of orientation, the subject’s perception needs to follow the true stimuli, and response
movements need to be ballistic. Figure 3 confirms that these requirements were fulfilled. The stim-
ulus distribution was nearly uniform in the space of orientations, and the subjects’ response was
similar without any evidence for bias in the cardinal directions (Fig 2A). Subjects’ judgement faith-
fully followed the true orientation of the target line segment (Pearson’s r=0.97, p<10�3) (Fig 2B),
and their stroke was a straight line with average deviation from the straight line between the starting
and endpoints below 3.3±0.2% of the length of the stroke (Fig 2C). In addition, we calculated the
time profile of the strokes and found that subjects’ mean duration of drawing was 450±110 msec
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the subjective assessment of uncertainty in their estimate by drawing a line on a tablet with a sty-
lus. The orientation of the line indicated the estimated orientation of the line segment, while the
length of the line corresponded to subjective uncertainty. A longer line indicated less certainty to
avoid the possible confound in measuring error-uncertainty correlations as shorter segments provide
inherently less precision for orientation. After the subject responded, the mask and cue disappeared
and a small segment appeared at the tested location with the orientation chosen by the subject and
with a gray wedge around the line segment with a width (subtended angle) corresponding to the
reported uncertainty. (The true orientation of the segment was not displayed.) This feedback display
appeared for 500 msec, after which the new trial began.

To enhance the quality of subjective uncertainty estimation, a scoring function was used to assess
subjects’ performance at each trial. Subjects were told that their goal was to maximize their score
which was calculated by combining the accuracy and certainty of their response. To calculate the
scores, we used the log probability of the true stimulus orientation under a circular Gaussian (von
Mises) distribution defined by the subject’s response. This scoring function can be maximised if the
subject’s uncertainty report reflects their true subjective uncertainty which in turn is predictive of the
errors they are making [18]. To prevent subjects from developing simple feedback-based strategies
while keeping them alert, subjects received only grouped feedback after every 10 trials in the form of
an average score. Subjects completed 3-4 sessions of 900 trials across multiple days. To familiarize
themselves with the procedure and to facilitate the precision of mapping from uncertainty to line
length, prior to each test session subjects had a practice session with 50 trials during which they
received feedback after every trial including the true orientation of the cued segment. Data from
these trials was not included in the analyses.

4 Results

We collected data from a total of N=5 subjects, four of whom were naive while the last one was
informed about the goal of the experiment. We found no difference in performance between the
naive and informed subjects confirming that the paradigm measured direct reactions of the subjects
without much cognitive influence.

4.1 Basic measures and controls

First, we checked whether in our paradigm we measured the relevant aspects of human performance.
In order to measure the typical pattern of trial-by-trial error and uncertainty, the stimuli must cover
the entire space of orientation, the subject’s perception needs to follow the true stimuli, and response
movements need to be ballistic. Figure 3 confirms that these requirements were fulfilled. The stim-
ulus distribution was nearly uniform in the space of orientations, and the subjects’ response was
similar without any evidence for bias in the cardinal directions (Fig 2A). Subjects’ judgement faith-
fully followed the true orientation of the target line segment (Pearson’s r=0.97, p<10�3) (Fig 2B),
and their stroke was a straight line with average deviation from the straight line between the starting
and endpoints below 3.3±0.2% of the length of the stroke (Fig 2C). In addition, we calculated the
time profile of the strokes and found that subjects’ mean duration of drawing was 450±110 msec
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the subjective assessment of uncertainty in their estimate by drawing a line on a tablet with a sty-
lus. The orientation of the line indicated the estimated orientation of the line segment, while the
length of the line corresponded to subjective uncertainty. A longer line indicated less certainty to
avoid the possible confound in measuring error-uncertainty correlations as shorter segments provide
inherently less precision for orientation. After the subject responded, the mask and cue disappeared
and a small segment appeared at the tested location with the orientation chosen by the subject and
with a gray wedge around the line segment with a width (subtended angle) corresponding to the
reported uncertainty. (The true orientation of the segment was not displayed.) This feedback display
appeared for 500 msec, after which the new trial began.

To enhance the quality of subjective uncertainty estimation, a scoring function was used to assess
subjects’ performance at each trial. Subjects were told that their goal was to maximize their score
which was calculated by combining the accuracy and certainty of their response. To calculate the
scores, we used the log probability of the true stimulus orientation under a circular Gaussian (von
Mises) distribution defined by the subject’s response. This scoring function can be maximised if the
subject’s uncertainty report reflects their true subjective uncertainty which in turn is predictive of the
errors they are making [18]. To prevent subjects from developing simple feedback-based strategies
while keeping them alert, subjects received only grouped feedback after every 10 trials in the form of
an average score. Subjects completed 3-4 sessions of 900 trials across multiple days. To familiarize
themselves with the procedure and to facilitate the precision of mapping from uncertainty to line
length, prior to each test session subjects had a practice session with 50 trials during which they
received feedback after every trial including the true orientation of the cued segment. Data from
these trials was not included in the analyses.

4 Results

We collected data from a total of N=5 subjects, four of whom were naive while the last one was
informed about the goal of the experiment. We found no difference in performance between the
naive and informed subjects confirming that the paradigm measured direct reactions of the subjects
without much cognitive influence.

4.1 Basic measures and controls

First, we checked whether in our paradigm we measured the relevant aspects of human performance.
In order to measure the typical pattern of trial-by-trial error and uncertainty, the stimuli must cover
the entire space of orientation, the subject’s perception needs to follow the true stimuli, and response
movements need to be ballistic. Figure 3 confirms that these requirements were fulfilled. The stim-
ulus distribution was nearly uniform in the space of orientations, and the subjects’ response was
similar without any evidence for bias in the cardinal directions (Fig 2A). Subjects’ judgement faith-
fully followed the true orientation of the target line segment (Pearson’s r=0.97, p<10�3) (Fig 2B),
and their stroke was a straight line with average deviation from the straight line between the starting
and endpoints below 3.3±0.2% of the length of the stroke (Fig 2C). In addition, we calculated the
time profile of the strokes and found that subjects’ mean duration of drawing was 450±110 msec
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the subjective assessment of uncertainty in their estimate by drawing a line on a tablet with a sty-
lus. The orientation of the line indicated the estimated orientation of the line segment, while the
length of the line corresponded to subjective uncertainty. A longer line indicated less certainty to
avoid the possible confound in measuring error-uncertainty correlations as shorter segments provide
inherently less precision for orientation. After the subject responded, the mask and cue disappeared
and a small segment appeared at the tested location with the orientation chosen by the subject and
with a gray wedge around the line segment with a width (subtended angle) corresponding to the
reported uncertainty. (The true orientation of the segment was not displayed.) This feedback display
appeared for 500 msec, after which the new trial began.

To enhance the quality of subjective uncertainty estimation, a scoring function was used to assess
subjects’ performance at each trial. Subjects were told that their goal was to maximize their score
which was calculated by combining the accuracy and certainty of their response. To calculate the
scores, we used the log probability of the true stimulus orientation under a circular Gaussian (von
Mises) distribution defined by the subject’s response. This scoring function can be maximised if the
subject’s uncertainty report reflects their true subjective uncertainty which in turn is predictive of the
errors they are making [18]. To prevent subjects from developing simple feedback-based strategies
while keeping them alert, subjects received only grouped feedback after every 10 trials in the form of
an average score. Subjects completed 3-4 sessions of 900 trials across multiple days. To familiarize
themselves with the procedure and to facilitate the precision of mapping from uncertainty to line
length, prior to each test session subjects had a practice session with 50 trials during which they
received feedback after every trial including the true orientation of the cued segment. Data from
these trials was not included in the analyses.

4 Results

We collected data from a total of N=5 subjects, four of whom were naive while the last one was
informed about the goal of the experiment. We found no difference in performance between the
naive and informed subjects confirming that the paradigm measured direct reactions of the subjects
without much cognitive influence.

4.1 Basic measures and controls

First, we checked whether in our paradigm we measured the relevant aspects of human performance.
In order to measure the typical pattern of trial-by-trial error and uncertainty, the stimuli must cover
the entire space of orientation, the subject’s perception needs to follow the true stimuli, and response
movements need to be ballistic. Figure 3 confirms that these requirements were fulfilled. The stim-
ulus distribution was nearly uniform in the space of orientations, and the subjects’ response was
similar without any evidence for bias in the cardinal directions (Fig 2A). Subjects’ judgement faith-
fully followed the true orientation of the target line segment (Pearson’s r=0.97, p<10�3) (Fig 2B),
and their stroke was a straight line with average deviation from the straight line between the starting
and endpoints below 3.3±0.2% of the length of the stroke (Fig 2C). In addition, we calculated the
time profile of the strokes and found that subjects’ mean duration of drawing was 450±110 msec
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the subjective assessment of uncertainty in their estimate by drawing a line on a tablet with a sty-
lus. The orientation of the line indicated the estimated orientation of the line segment, while the
length of the line corresponded to subjective uncertainty. A longer line indicated less certainty to
avoid the possible confound in measuring error-uncertainty correlations as shorter segments provide
inherently less precision for orientation. After the subject responded, the mask and cue disappeared
and a small segment appeared at the tested location with the orientation chosen by the subject and
with a gray wedge around the line segment with a width (subtended angle) corresponding to the
reported uncertainty. (The true orientation of the segment was not displayed.) This feedback display
appeared for 500 msec, after which the new trial began.

To enhance the quality of subjective uncertainty estimation, a scoring function was used to assess
subjects’ performance at each trial. Subjects were told that their goal was to maximize their score
which was calculated by combining the accuracy and certainty of their response. To calculate the
scores, we used the log probability of the true stimulus orientation under a circular Gaussian (von
Mises) distribution defined by the subject’s response. This scoring function can be maximised if the
subject’s uncertainty report reflects their true subjective uncertainty which in turn is predictive of the
errors they are making [18]. To prevent subjects from developing simple feedback-based strategies
while keeping them alert, subjects received only grouped feedback after every 10 trials in the form of
an average score. Subjects completed 3-4 sessions of 900 trials across multiple days. To familiarize
themselves with the procedure and to facilitate the precision of mapping from uncertainty to line
length, prior to each test session subjects had a practice session with 50 trials during which they
received feedback after every trial including the true orientation of the cued segment. Data from
these trials was not included in the analyses.

4 Results

We collected data from a total of N=5 subjects, four of whom were naive while the last one was
informed about the goal of the experiment. We found no difference in performance between the
naive and informed subjects confirming that the paradigm measured direct reactions of the subjects
without much cognitive influence.

4.1 Basic measures and controls

First, we checked whether in our paradigm we measured the relevant aspects of human performance.
In order to measure the typical pattern of trial-by-trial error and uncertainty, the stimuli must cover
the entire space of orientation, the subject’s perception needs to follow the true stimuli, and response
movements need to be ballistic. Figure 3 confirms that these requirements were fulfilled. The stim-
ulus distribution was nearly uniform in the space of orientations, and the subjects’ response was
similar without any evidence for bias in the cardinal directions (Fig 2A). Subjects’ judgement faith-
fully followed the true orientation of the target line segment (Pearson’s r=0.97, p<10�3) (Fig 2B),
and their stroke was a straight line with average deviation from the straight line between the starting
and endpoints below 3.3±0.2% of the length of the stroke (Fig 2C). In addition, we calculated the
time profile of the strokes and found that subjects’ mean duration of drawing was 450±110 msec
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the subjective assessment of uncertainty in their estimate by drawing a line on a tablet with a sty-
lus. The orientation of the line indicated the estimated orientation of the line segment, while the
length of the line corresponded to subjective uncertainty. A longer line indicated less certainty to
avoid the possible confound in measuring error-uncertainty correlations as shorter segments provide
inherently less precision for orientation. After the subject responded, the mask and cue disappeared
and a small segment appeared at the tested location with the orientation chosen by the subject and
with a gray wedge around the line segment with a width (subtended angle) corresponding to the
reported uncertainty. (The true orientation of the segment was not displayed.) This feedback display
appeared for 500 msec, after which the new trial began.

To enhance the quality of subjective uncertainty estimation, a scoring function was used to assess
subjects’ performance at each trial. Subjects were told that their goal was to maximize their score
which was calculated by combining the accuracy and certainty of their response. To calculate the
scores, we used the log probability of the true stimulus orientation under a circular Gaussian (von
Mises) distribution defined by the subject’s response. This scoring function can be maximised if the
subject’s uncertainty report reflects their true subjective uncertainty which in turn is predictive of the
errors they are making [18]. To prevent subjects from developing simple feedback-based strategies
while keeping them alert, subjects received only grouped feedback after every 10 trials in the form of
an average score. Subjects completed 3-4 sessions of 900 trials across multiple days. To familiarize
themselves with the procedure and to facilitate the precision of mapping from uncertainty to line
length, prior to each test session subjects had a practice session with 50 trials during which they
received feedback after every trial including the true orientation of the cued segment. Data from
these trials was not included in the analyses.

4 Results

We collected data from a total of N=5 subjects, four of whom were naive while the last one was
informed about the goal of the experiment. We found no difference in performance between the
naive and informed subjects confirming that the paradigm measured direct reactions of the subjects
without much cognitive influence.

4.1 Basic measures and controls

First, we checked whether in our paradigm we measured the relevant aspects of human performance.
In order to measure the typical pattern of trial-by-trial error and uncertainty, the stimuli must cover
the entire space of orientation, the subject’s perception needs to follow the true stimuli, and response
movements need to be ballistic. Figure 3 confirms that these requirements were fulfilled. The stim-
ulus distribution was nearly uniform in the space of orientations, and the subjects’ response was
similar without any evidence for bias in the cardinal directions (Fig 2A). Subjects’ judgement faith-
fully followed the true orientation of the target line segment (Pearson’s r=0.97, p<10�3) (Fig 2B),
and their stroke was a straight line with average deviation from the straight line between the starting
and endpoints below 3.3±0.2% of the length of the stroke (Fig 2C). In addition, we calculated the
time profile of the strokes and found that subjects’ mean duration of drawing was 450±110 msec
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Figure 2: Experimental design. A. In each trial, the subject made an orientation estimation judge-
ment and provided information about the orientation and their subjective uncertainty by drawing a
single stroke on a tablet. See text for details. B. Estimation error ("
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orientations, and level of uncertainty (�2

x

) were the dependent variables in the experiment.

the subjective assessment of uncertainty in their estimate by drawing a line on a tablet with a sty-
lus. The orientation of the line indicated the estimated orientation of the line segment, while the
length of the line corresponded to subjective uncertainty. A longer line indicated less certainty to
avoid the possible confound in measuring error-uncertainty correlations as shorter segments provide
inherently less precision for orientation. After the subject responded, the mask and cue disappeared
and a small segment appeared at the tested location with the orientation chosen by the subject and
with a gray wedge around the line segment with a width (subtended angle) corresponding to the
reported uncertainty. (The true orientation of the segment was not displayed.) This feedback display
appeared for 500 msec, after which the new trial began.

To enhance the quality of subjective uncertainty estimation, a scoring function was used to assess
subjects’ performance at each trial. Subjects were told that their goal was to maximize their score
which was calculated by combining the accuracy and certainty of their response. To calculate the
scores, we used the log probability of the true stimulus orientation under a circular Gaussian (von
Mises) distribution defined by the subject’s response. This scoring function can be maximised if the
subject’s uncertainty report reflects their true subjective uncertainty which in turn is predictive of the
errors they are making [18]. To prevent subjects from developing simple feedback-based strategies
while keeping them alert, subjects received only grouped feedback after every 10 trials in the form of
an average score. Subjects completed 3-4 sessions of 900 trials across multiple days. To familiarize
themselves with the procedure and to facilitate the precision of mapping from uncertainty to line
length, prior to each test session subjects had a practice session with 50 trials during which they
received feedback after every trial including the true orientation of the cued segment. Data from
these trials was not included in the analyses.

4 Results

We collected data from a total of N=5 subjects, four of whom were naive while the last one was
informed about the goal of the experiment. We found no difference in performance between the
naive and informed subjects confirming that the paradigm measured direct reactions of the subjects
without much cognitive influence.

4.1 Basic measures and controls

First, we checked whether in our paradigm we measured the relevant aspects of human performance.
In order to measure the typical pattern of trial-by-trial error and uncertainty, the stimuli must cover
the entire space of orientation, the subject’s perception needs to follow the true stimuli, and response
movements need to be ballistic. Figure 3 confirms that these requirements were fulfilled. The stim-
ulus distribution was nearly uniform in the space of orientations, and the subjects’ response was
similar without any evidence for bias in the cardinal directions (Fig 2A). Subjects’ judgement faith-
fully followed the true orientation of the target line segment (Pearson’s r=0.97, p<10�3) (Fig 2B),
and their stroke was a straight line with average deviation from the straight line between the starting
and endpoints below 3.3±0.2% of the length of the stroke (Fig 2C). In addition, we calculated the
time profile of the strokes and found that subjects’ mean duration of drawing was 450±110 msec
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orientations, and level of uncertainty (�2
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) were the dependent variables in the experiment.

the subjective assessment of uncertainty in their estimate by drawing a line on a tablet with a sty-
lus. The orientation of the line indicated the estimated orientation of the line segment, while the
length of the line corresponded to subjective uncertainty. A longer line indicated less certainty to
avoid the possible confound in measuring error-uncertainty correlations as shorter segments provide
inherently less precision for orientation. After the subject responded, the mask and cue disappeared
and a small segment appeared at the tested location with the orientation chosen by the subject and
with a gray wedge around the line segment with a width (subtended angle) corresponding to the
reported uncertainty. (The true orientation of the segment was not displayed.) This feedback display
appeared for 500 msec, after which the new trial began.

To enhance the quality of subjective uncertainty estimation, a scoring function was used to assess
subjects’ performance at each trial. Subjects were told that their goal was to maximize their score
which was calculated by combining the accuracy and certainty of their response. To calculate the
scores, we used the log probability of the true stimulus orientation under a circular Gaussian (von
Mises) distribution defined by the subject’s response. This scoring function can be maximised if the
subject’s uncertainty report reflects their true subjective uncertainty which in turn is predictive of the
errors they are making [18]. To prevent subjects from developing simple feedback-based strategies
while keeping them alert, subjects received only grouped feedback after every 10 trials in the form of
an average score. Subjects completed 3-4 sessions of 900 trials across multiple days. To familiarize
themselves with the procedure and to facilitate the precision of mapping from uncertainty to line
length, prior to each test session subjects had a practice session with 50 trials during which they
received feedback after every trial including the true orientation of the cued segment. Data from
these trials was not included in the analyses.

4 Results

We collected data from a total of N=5 subjects, four of whom were naive while the last one was
informed about the goal of the experiment. We found no difference in performance between the
naive and informed subjects confirming that the paradigm measured direct reactions of the subjects
without much cognitive influence.

4.1 Basic measures and controls

First, we checked whether in our paradigm we measured the relevant aspects of human performance.
In order to measure the typical pattern of trial-by-trial error and uncertainty, the stimuli must cover
the entire space of orientation, the subject’s perception needs to follow the true stimuli, and response
movements need to be ballistic. Figure 3 confirms that these requirements were fulfilled. The stim-
ulus distribution was nearly uniform in the space of orientations, and the subjects’ response was
similar without any evidence for bias in the cardinal directions (Fig 2A). Subjects’ judgement faith-
fully followed the true orientation of the target line segment (Pearson’s r=0.97, p<10�3) (Fig 2B),
and their stroke was a straight line with average deviation from the straight line between the starting
and endpoints below 3.3±0.2% of the length of the stroke (Fig 2C). In addition, we calculated the
time profile of the strokes and found that subjects’ mean duration of drawing was 450±110 msec
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Figure 2: Experimental design. A. In each trial, the subject made an orientation estimation judge-
ment and provided information about the orientation and their subjective uncertainty by drawing a
single stroke on a tablet. See text for details. B. Estimation error ("
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orientations, and level of uncertainty (�2
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) were the dependent variables in the experiment.

the subjective assessment of uncertainty in their estimate by drawing a line on a tablet with a sty-
lus. The orientation of the line indicated the estimated orientation of the line segment, while the
length of the line corresponded to subjective uncertainty. A longer line indicated less certainty to
avoid the possible confound in measuring error-uncertainty correlations as shorter segments provide
inherently less precision for orientation. After the subject responded, the mask and cue disappeared
and a small segment appeared at the tested location with the orientation chosen by the subject and
with a gray wedge around the line segment with a width (subtended angle) corresponding to the
reported uncertainty. (The true orientation of the segment was not displayed.) This feedback display
appeared for 500 msec, after which the new trial began.

To enhance the quality of subjective uncertainty estimation, a scoring function was used to assess
subjects’ performance at each trial. Subjects were told that their goal was to maximize their score
which was calculated by combining the accuracy and certainty of their response. To calculate the
scores, we used the log probability of the true stimulus orientation under a circular Gaussian (von
Mises) distribution defined by the subject’s response. This scoring function can be maximised if the
subject’s uncertainty report reflects their true subjective uncertainty which in turn is predictive of the
errors they are making [18]. To prevent subjects from developing simple feedback-based strategies
while keeping them alert, subjects received only grouped feedback after every 10 trials in the form of
an average score. Subjects completed 3-4 sessions of 900 trials across multiple days. To familiarize
themselves with the procedure and to facilitate the precision of mapping from uncertainty to line
length, prior to each test session subjects had a practice session with 50 trials during which they
received feedback after every trial including the true orientation of the cued segment. Data from
these trials was not included in the analyses.

4 Results

We collected data from a total of N=5 subjects, four of whom were naive while the last one was
informed about the goal of the experiment. We found no difference in performance between the
naive and informed subjects confirming that the paradigm measured direct reactions of the subjects
without much cognitive influence.

4.1 Basic measures and controls

First, we checked whether in our paradigm we measured the relevant aspects of human performance.
In order to measure the typical pattern of trial-by-trial error and uncertainty, the stimuli must cover
the entire space of orientation, the subject’s perception needs to follow the true stimuli, and response
movements need to be ballistic. Figure 3 confirms that these requirements were fulfilled. The stim-
ulus distribution was nearly uniform in the space of orientations, and the subjects’ response was
similar without any evidence for bias in the cardinal directions (Fig 2A). Subjects’ judgement faith-
fully followed the true orientation of the target line segment (Pearson’s r=0.97, p<10�3) (Fig 2B),
and their stroke was a straight line with average deviation from the straight line between the starting
and endpoints below 3.3±0.2% of the length of the stroke (Fig 2C). In addition, we calculated the
time profile of the strokes and found that subjects’ mean duration of drawing was 450±110 msec
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Figure 2: Experimental design. A. In each trial, the subject made an orientation estimation judge-
ment and provided information about the orientation and their subjective uncertainty by drawing a
single stroke on a tablet. See text for details. B. Estimation error ("
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) between the true and reported
orientations, and level of uncertainty (�2

x

) were the dependent variables in the experiment.

the subjective assessment of uncertainty in their estimate by drawing a line on a tablet with a sty-
lus. The orientation of the line indicated the estimated orientation of the line segment, while the
length of the line corresponded to subjective uncertainty. A longer line indicated less certainty to
avoid the possible confound in measuring error-uncertainty correlations as shorter segments provide
inherently less precision for orientation. After the subject responded, the mask and cue disappeared
and a small segment appeared at the tested location with the orientation chosen by the subject and
with a gray wedge around the line segment with a width (subtended angle) corresponding to the
reported uncertainty. (The true orientation of the segment was not displayed.) This feedback display
appeared for 500 msec, after which the new trial began.

To enhance the quality of subjective uncertainty estimation, a scoring function was used to assess
subjects’ performance at each trial. Subjects were told that their goal was to maximize their score
which was calculated by combining the accuracy and certainty of their response. To calculate the
scores, we used the log probability of the true stimulus orientation under a circular Gaussian (von
Mises) distribution defined by the subject’s response. This scoring function can be maximised if the
subject’s uncertainty report reflects their true subjective uncertainty which in turn is predictive of the
errors they are making [18]. To prevent subjects from developing simple feedback-based strategies
while keeping them alert, subjects received only grouped feedback after every 10 trials in the form of
an average score. Subjects completed 3-4 sessions of 900 trials across multiple days. To familiarize
themselves with the procedure and to facilitate the precision of mapping from uncertainty to line
length, prior to each test session subjects had a practice session with 50 trials during which they
received feedback after every trial including the true orientation of the cued segment. Data from
these trials was not included in the analyses.

4 Results

We collected data from a total of N=5 subjects, four of whom were naive while the last one was
informed about the goal of the experiment. We found no difference in performance between the
naive and informed subjects confirming that the paradigm measured direct reactions of the subjects
without much cognitive influence.

4.1 Basic measures and controls

First, we checked whether in our paradigm we measured the relevant aspects of human performance.
In order to measure the typical pattern of trial-by-trial error and uncertainty, the stimuli must cover
the entire space of orientation, the subject’s perception needs to follow the true stimuli, and response
movements need to be ballistic. Figure 3 confirms that these requirements were fulfilled. The stim-
ulus distribution was nearly uniform in the space of orientations, and the subjects’ response was
similar without any evidence for bias in the cardinal directions (Fig 2A). Subjects’ judgement faith-
fully followed the true orientation of the target line segment (Pearson’s r=0.97, p<10�3) (Fig 2B),
and their stroke was a straight line with average deviation from the straight line between the starting
and endpoints below 3.3±0.2% of the length of the stroke (Fig 2C). In addition, we calculated the
time profile of the strokes and found that subjects’ mean duration of drawing was 450±110 msec
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Figure 2: Experimental design. A. In each trial, the subject made an orientation estimation judge-
ment and provided information about the orientation and their subjective uncertainty by drawing a
single stroke on a tablet. See text for details. B. Estimation error ("
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) between the true and reported
orientations, and level of uncertainty (�2

x

) were the dependent variables in the experiment.

the subjective assessment of uncertainty in their estimate by drawing a line on a tablet with a sty-
lus. The orientation of the line indicated the estimated orientation of the line segment, while the
length of the line corresponded to subjective uncertainty. A longer line indicated less certainty to
avoid the possible confound in measuring error-uncertainty correlations as shorter segments provide
inherently less precision for orientation. After the subject responded, the mask and cue disappeared
and a small segment appeared at the tested location with the orientation chosen by the subject and
with a gray wedge around the line segment with a width (subtended angle) corresponding to the
reported uncertainty. (The true orientation of the segment was not displayed.) This feedback display
appeared for 500 msec, after which the new trial began.

To enhance the quality of subjective uncertainty estimation, a scoring function was used to assess
subjects’ performance at each trial. Subjects were told that their goal was to maximize their score
which was calculated by combining the accuracy and certainty of their response. To calculate the
scores, we used the log probability of the true stimulus orientation under a circular Gaussian (von
Mises) distribution defined by the subject’s response. This scoring function can be maximised if the
subject’s uncertainty report reflects their true subjective uncertainty which in turn is predictive of the
errors they are making [18]. To prevent subjects from developing simple feedback-based strategies
while keeping them alert, subjects received only grouped feedback after every 10 trials in the form of
an average score. Subjects completed 3-4 sessions of 900 trials across multiple days. To familiarize
themselves with the procedure and to facilitate the precision of mapping from uncertainty to line
length, prior to each test session subjects had a practice session with 50 trials during which they
received feedback after every trial including the true orientation of the cued segment. Data from
these trials was not included in the analyses.

4 Results

We collected data from a total of N=5 subjects, four of whom were naive while the last one was
informed about the goal of the experiment. We found no difference in performance between the
naive and informed subjects confirming that the paradigm measured direct reactions of the subjects
without much cognitive influence.

4.1 Basic measures and controls

First, we checked whether in our paradigm we measured the relevant aspects of human performance.
In order to measure the typical pattern of trial-by-trial error and uncertainty, the stimuli must cover
the entire space of orientation, the subject’s perception needs to follow the true stimuli, and response
movements need to be ballistic. Figure 3 confirms that these requirements were fulfilled. The stim-
ulus distribution was nearly uniform in the space of orientations, and the subjects’ response was
similar without any evidence for bias in the cardinal directions (Fig 2A). Subjects’ judgement faith-
fully followed the true orientation of the target line segment (Pearson’s r=0.97, p<10�3) (Fig 2B),
and their stroke was a straight line with average deviation from the straight line between the starting
and endpoints below 3.3±0.2% of the length of the stroke (Fig 2C). In addition, we calculated the
time profile of the strokes and found that subjects’ mean duration of drawing was 450±110 msec
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Figure 2: Experimental design. A. In each trial, the subject made an orientation estimation judge-
ment and provided information about the orientation and their subjective uncertainty by drawing a
single stroke on a tablet. See text for details. B. Estimation error ("
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) between the true and reported
orientations, and level of uncertainty (�2
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) were the dependent variables in the experiment.

the subjective assessment of uncertainty in their estimate by drawing a line on a tablet with a sty-
lus. The orientation of the line indicated the estimated orientation of the line segment, while the
length of the line corresponded to subjective uncertainty. A longer line indicated less certainty to
avoid the possible confound in measuring error-uncertainty correlations as shorter segments provide
inherently less precision for orientation. After the subject responded, the mask and cue disappeared
and a small segment appeared at the tested location with the orientation chosen by the subject and
with a gray wedge around the line segment with a width (subtended angle) corresponding to the
reported uncertainty. (The true orientation of the segment was not displayed.) This feedback display
appeared for 500 msec, after which the new trial began.

To enhance the quality of subjective uncertainty estimation, a scoring function was used to assess
subjects’ performance at each trial. Subjects were told that their goal was to maximize their score
which was calculated by combining the accuracy and certainty of their response. To calculate the
scores, we used the log probability of the true stimulus orientation under a circular Gaussian (von
Mises) distribution defined by the subject’s response. This scoring function can be maximised if the
subject’s uncertainty report reflects their true subjective uncertainty which in turn is predictive of the
errors they are making [18]. To prevent subjects from developing simple feedback-based strategies
while keeping them alert, subjects received only grouped feedback after every 10 trials in the form of
an average score. Subjects completed 3-4 sessions of 900 trials across multiple days. To familiarize
themselves with the procedure and to facilitate the precision of mapping from uncertainty to line
length, prior to each test session subjects had a practice session with 50 trials during which they
received feedback after every trial including the true orientation of the cued segment. Data from
these trials was not included in the analyses.

4 Results

We collected data from a total of N=5 subjects, four of whom were naive while the last one was
informed about the goal of the experiment. We found no difference in performance between the
naive and informed subjects confirming that the paradigm measured direct reactions of the subjects
without much cognitive influence.

4.1 Basic measures and controls

First, we checked whether in our paradigm we measured the relevant aspects of human performance.
In order to measure the typical pattern of trial-by-trial error and uncertainty, the stimuli must cover
the entire space of orientation, the subject’s perception needs to follow the true stimuli, and response
movements need to be ballistic. Figure 3 confirms that these requirements were fulfilled. The stim-
ulus distribution was nearly uniform in the space of orientations, and the subjects’ response was
similar without any evidence for bias in the cardinal directions (Fig 2A). Subjects’ judgement faith-
fully followed the true orientation of the target line segment (Pearson’s r=0.97, p<10�3) (Fig 2B),
and their stroke was a straight line with average deviation from the straight line between the starting
and endpoints below 3.3±0.2% of the length of the stroke (Fig 2C). In addition, we calculated the
time profile of the strokes and found that subjects’ mean duration of drawing was 450±110 msec
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Figure 3: Control measures. The experiment gives veridical trial-by-trial information about sub-
jects’ error and subjective uncertainty. A. The distributions of the test line segments’ true and re-
ported orientation. B. Trial-by trial correspondence between the line segments’ true and reported
orientation across all subjects and trial (N=5). C. Trajectories of strokes for all subjects normalized
between (0;0) and (1;0).

(mean±s.e.) with standard deviation of 160±30 msec. This suggests that subjects drew the line
segments with a fast, single stroke without much explicit cognitive deliberation or modulation by
different aspects of the task.

4.2 The representation of error and uncertainty

Next, we tested whether subjects’ uncertainty reports were predictive of their estimation errors.
Figure 4 shows a typical subject’s result with trials binned by reported uncertainty and the resulting
error histograms fitted with a circular Gaussian. The error distribution remained centered at zero,
but showed a clearly increasing spread as the subject’s subjective report of uncertainty about the
correctness of the trial increased.

Figure 5 shows the same fitted circular Gaussians to each subject together with the underlying scatter
plots of (absolute error) vs. reported uncertainty. Despite individual variations, each subject showed
the same general relation of increasing uncertainty corresponding to steadily increasing error in
their performance. This suggests that subjects had a reliable representation of the quality of their
perceptual information and faithfully reported this through their stroke. Thus, our experimental
paradigm and response method successfully captured subjects’ trial-by-trial error and uncertainty.

4.3 The effect of task difficulty on error, uncertainty and their correlation

We investigated how task difficulty affects subjects’ error level, uncertainty and the correlation be-
tween the two. As task difficulty increased either by increasing the number of line segments in the
display or by decreasing the contrast of the target segment, both the error rate and uncertainty of the
judgment increased significantly (Figure 6, 1st column, top two panels; the absolute value of Spear-
man’s ⇢ was between 0.60 and 0.95, with p<0.002 in all cases). Expressed in terms of reaction times
(RTs), we found the same trend: as RTs increased, presumably due to finding the trial more difficult
either because of the nature of the sensory input (more segments, less contrast) or for some other
reason (e.g. lapse of attention, or focusing on an irrelevant part of the display), both subjects’ errors
and level of uncertainty increased significantly (Figure 6, 1st column, bottom panel; Spearman’s
⇢>0.87, with p<0.001 in both cases). Thus all three manipulations had a significant modulatory
effect on both error and uncertainty of subjects’ response. Importantly, however, these finding were
in contrast with the effect of task difficulty on the error-uncertainty regression. We quantified the
effect of task on the error-uncertainty regression by first selecting trials based on either number of
line segments, contrast level, or RT duration for each subject, and then taking the slope and intercept
of the regression line fitted to data collected in these trials (Figure 6, right two columns). Neither the
slope nor the intercept were sensitive significantly to changes in any of the three parameters of con-
trast, line number, or RT (p>0.24 for Spearman’s correlation in all but one case, for which p>0.098,
i.e. still non-significant). This means that while task difficulty reliably influenced subjects errors
and uncertainty levels, it left the calibration between the two essentially unaltered, suggesting that
subjects used a single, universal internal scale of uncertainty – in line with theories of probabilistic
representations.
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Figure 3: Control measures. The experiment gives veridical trial-by-trial information about sub-
jects’ error and subjective uncertainty. A. The distributions of the test line segments’ true and re-
ported orientation. B. Trial-by trial correspondence between the line segments’ true and reported
orientation across all subjects and trial (N=5). C. Trajectories of strokes for all subjects normalized
between (0;0) and (1;0).

(mean±s.e.) with standard deviation of 160±30 msec. This suggests that subjects drew the line
segments with a fast, single stroke without much explicit cognitive deliberation or modulation by
different aspects of the task.

4.2 The representation of error and uncertainty

Next, we tested whether subjects’ uncertainty reports were predictive of their estimation errors.
Figure 4 shows a typical subject’s result with trials binned by reported uncertainty and the resulting
error histograms fitted with a circular Gaussian. The error distribution remained centered at zero,
but showed a clearly increasing spread as the subject’s subjective report of uncertainty about the
correctness of the trial increased.

Figure 5 shows the same fitted circular Gaussians to each subject together with the underlying scatter
plots of (absolute error) vs. reported uncertainty. Despite individual variations, each subject showed
the same general relation of increasing uncertainty corresponding to steadily increasing error in
their performance. This suggests that subjects had a reliable representation of the quality of their
perceptual information and faithfully reported this through their stroke. Thus, our experimental
paradigm and response method successfully captured subjects’ trial-by-trial error and uncertainty.

4.3 The effect of task difficulty on error, uncertainty and their correlation

We investigated how task difficulty affects subjects’ error level, uncertainty and the correlation be-
tween the two. As task difficulty increased either by increasing the number of line segments in the
display or by decreasing the contrast of the target segment, both the error rate and uncertainty of the
judgment increased significantly (Figure 6, 1st column, top two panels; the absolute value of Spear-
man’s ⇢ was between 0.60 and 0.95, with p<0.002 in all cases). Expressed in terms of reaction times
(RTs), we found the same trend: as RTs increased, presumably due to finding the trial more difficult
either because of the nature of the sensory input (more segments, less contrast) or for some other
reason (e.g. lapse of attention, or focusing on an irrelevant part of the display), both subjects’ errors
and level of uncertainty increased significantly (Figure 6, 1st column, bottom panel; Spearman’s
⇢>0.87, with p<0.001 in both cases). Thus all three manipulations had a significant modulatory
effect on both error and uncertainty of subjects’ response. Importantly, however, these finding were
in contrast with the effect of task difficulty on the error-uncertainty regression. We quantified the
effect of task on the error-uncertainty regression by first selecting trials based on either number of
line segments, contrast level, or RT duration for each subject, and then taking the slope and intercept
of the regression line fitted to data collected in these trials (Figure 6, right two columns). Neither the
slope nor the intercept were sensitive significantly to changes in any of the three parameters of con-
trast, line number, or RT (p>0.24 for Spearman’s correlation in all but one case, for which p>0.098,
i.e. still non-significant). This means that while task difficulty reliably influenced subjects errors
and uncertainty levels, it left the calibration between the two essentially unaltered, suggesting that
subjects used a single, universal internal scale of uncertainty – in line with theories of probabilistic
representations.
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Figure 3: Control measures. The experiment gives veridical trial-by-trial information about sub-
jects’ error and subjective uncertainty. A. The distributions of the test line segments’ true and re-
ported orientation. B. Trial-by trial correspondence between the line segments’ true and reported
orientation across all subjects and trial (N=5). C. Trajectories of strokes for all subjects normalized
between (0;0) and (1;0).

(mean±s.e.) with standard deviation of 160±30 msec. This suggests that subjects drew the line
segments with a fast, single stroke without much explicit cognitive deliberation or modulation by
different aspects of the task.

4.2 The representation of error and uncertainty

Next, we tested whether subjects’ uncertainty reports were predictive of their estimation errors.
Figure 4 shows a typical subject’s result with trials binned by reported uncertainty and the resulting
error histograms fitted with a circular Gaussian. The error distribution remained centered at zero,
but showed a clearly increasing spread as the subject’s subjective report of uncertainty about the
correctness of the trial increased.

Figure 5 shows the same fitted circular Gaussians to each subject together with the underlying scatter
plots of (absolute error) vs. reported uncertainty. Despite individual variations, each subject showed
the same general relation of increasing uncertainty corresponding to steadily increasing error in
their performance. This suggests that subjects had a reliable representation of the quality of their
perceptual information and faithfully reported this through their stroke. Thus, our experimental
paradigm and response method successfully captured subjects’ trial-by-trial error and uncertainty.

4.3 The effect of task difficulty on error, uncertainty and their correlation

We investigated how task difficulty affects subjects’ error level, uncertainty and the correlation be-
tween the two. As task difficulty increased either by increasing the number of line segments in the
display or by decreasing the contrast of the target segment, both the error rate and uncertainty of the
judgment increased significantly (Figure 6, 1st column, top two panels; the absolute value of Spear-
man’s ⇢ was between 0.60 and 0.95, with p<0.002 in all cases). Expressed in terms of reaction times
(RTs), we found the same trend: as RTs increased, presumably due to finding the trial more difficult
either because of the nature of the sensory input (more segments, less contrast) or for some other
reason (e.g. lapse of attention, or focusing on an irrelevant part of the display), both subjects’ errors
and level of uncertainty increased significantly (Figure 6, 1st column, bottom panel; Spearman’s
⇢>0.87, with p<0.001 in both cases). Thus all three manipulations had a significant modulatory
effect on both error and uncertainty of subjects’ response. Importantly, however, these finding were
in contrast with the effect of task difficulty on the error-uncertainty regression. We quantified the
effect of task on the error-uncertainty regression by first selecting trials based on either number of
line segments, contrast level, or RT duration for each subject, and then taking the slope and intercept
of the regression line fitted to data collected in these trials (Figure 6, right two columns). Neither the
slope nor the intercept were sensitive significantly to changes in any of the three parameters of con-
trast, line number, or RT (p>0.24 for Spearman’s correlation in all but one case, for which p>0.098,
i.e. still non-significant). This means that while task difficulty reliably influenced subjects errors
and uncertainty levels, it left the calibration between the two essentially unaltered, suggesting that
subjects used a single, universal internal scale of uncertainty – in line with theories of probabilistic
representations.
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Figure 3: Control measures. The experiment gives veridical trial-by-trial information about sub-
jects’ error and subjective uncertainty. A. The distributions of the test line segments’ true and re-
ported orientation. B. Trial-by trial correspondence between the line segments’ true and reported
orientation across all subjects and trial (N=5). C. Trajectories of strokes for all subjects normalized
between (0;0) and (1;0).

(mean±s.e.) with standard deviation of 160±30 msec. This suggests that subjects drew the line
segments with a fast, single stroke without much explicit cognitive deliberation or modulation by
different aspects of the task.

4.2 The representation of error and uncertainty

Next, we tested whether subjects’ uncertainty reports were predictive of their estimation errors.
Figure 4 shows a typical subject’s result with trials binned by reported uncertainty and the resulting
error histograms fitted with a circular Gaussian. The error distribution remained centered at zero,
but showed a clearly increasing spread as the subject’s subjective report of uncertainty about the
correctness of the trial increased.

Figure 5 shows the same fitted circular Gaussians to each subject together with the underlying scatter
plots of (absolute error) vs. reported uncertainty. Despite individual variations, each subject showed
the same general relation of increasing uncertainty corresponding to steadily increasing error in
their performance. This suggests that subjects had a reliable representation of the quality of their
perceptual information and faithfully reported this through their stroke. Thus, our experimental
paradigm and response method successfully captured subjects’ trial-by-trial error and uncertainty.

4.3 The effect of task difficulty on error, uncertainty and their correlation

We investigated how task difficulty affects subjects’ error level, uncertainty and the correlation be-
tween the two. As task difficulty increased either by increasing the number of line segments in the
display or by decreasing the contrast of the target segment, both the error rate and uncertainty of the
judgment increased significantly (Figure 6, 1st column, top two panels; the absolute value of Spear-
man’s ⇢ was between 0.60 and 0.95, with p<0.002 in all cases). Expressed in terms of reaction times
(RTs), we found the same trend: as RTs increased, presumably due to finding the trial more difficult
either because of the nature of the sensory input (more segments, less contrast) or for some other
reason (e.g. lapse of attention, or focusing on an irrelevant part of the display), both subjects’ errors
and level of uncertainty increased significantly (Figure 6, 1st column, bottom panel; Spearman’s
⇢>0.87, with p<0.001 in both cases). Thus all three manipulations had a significant modulatory
effect on both error and uncertainty of subjects’ response. Importantly, however, these finding were
in contrast with the effect of task difficulty on the error-uncertainty regression. We quantified the
effect of task on the error-uncertainty regression by first selecting trials based on either number of
line segments, contrast level, or RT duration for each subject, and then taking the slope and intercept
of the regression line fitted to data collected in these trials (Figure 6, right two columns). Neither the
slope nor the intercept were sensitive significantly to changes in any of the three parameters of con-
trast, line number, or RT (p>0.24 for Spearman’s correlation in all but one case, for which p>0.098,
i.e. still non-significant). This means that while task difficulty reliably influenced subjects errors
and uncertainty levels, it left the calibration between the two essentially unaltered, suggesting that
subjects used a single, universal internal scale of uncertainty – in line with theories of probabilistic
representations.
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Figure 3: Control measures. The experiment gives veridical trial-by-trial information about sub-
jects’ error and subjective uncertainty. A. The distributions of the test line segments’ true and re-
ported orientation. B. Trial-by trial correspondence between the line segments’ true and reported
orientation across all subjects and trial (N=5). C. Trajectories of strokes for all subjects normalized
between (0;0) and (1;0).

(mean±s.e.) with standard deviation of 160±30 msec. This suggests that subjects drew the line
segments with a fast, single stroke without much explicit cognitive deliberation or modulation by
different aspects of the task.

4.2 The representation of error and uncertainty

Next, we tested whether subjects’ uncertainty reports were predictive of their estimation errors.
Figure 4 shows a typical subject’s result with trials binned by reported uncertainty and the resulting
error histograms fitted with a circular Gaussian. The error distribution remained centered at zero,
but showed a clearly increasing spread as the subject’s subjective report of uncertainty about the
correctness of the trial increased.

Figure 5 shows the same fitted circular Gaussians to each subject together with the underlying scatter
plots of (absolute error) vs. reported uncertainty. Despite individual variations, each subject showed
the same general relation of increasing uncertainty corresponding to steadily increasing error in
their performance. This suggests that subjects had a reliable representation of the quality of their
perceptual information and faithfully reported this through their stroke. Thus, our experimental
paradigm and response method successfully captured subjects’ trial-by-trial error and uncertainty.

4.3 The effect of task difficulty on error, uncertainty and their correlation

We investigated how task difficulty affects subjects’ error level, uncertainty and the correlation be-
tween the two. As task difficulty increased either by increasing the number of line segments in the
display or by decreasing the contrast of the target segment, both the error rate and uncertainty of the
judgment increased significantly (Figure 6, 1st column, top two panels; the absolute value of Spear-
man’s ⇢ was between 0.60 and 0.95, with p<0.002 in all cases). Expressed in terms of reaction times
(RTs), we found the same trend: as RTs increased, presumably due to finding the trial more difficult
either because of the nature of the sensory input (more segments, less contrast) or for some other
reason (e.g. lapse of attention, or focusing on an irrelevant part of the display), both subjects’ errors
and level of uncertainty increased significantly (Figure 6, 1st column, bottom panel; Spearman’s
⇢>0.87, with p<0.001 in both cases). Thus all three manipulations had a significant modulatory
effect on both error and uncertainty of subjects’ response. Importantly, however, these finding were
in contrast with the effect of task difficulty on the error-uncertainty regression. We quantified the
effect of task on the error-uncertainty regression by first selecting trials based on either number of
line segments, contrast level, or RT duration for each subject, and then taking the slope and intercept
of the regression line fitted to data collected in these trials (Figure 6, right two columns). Neither the
slope nor the intercept were sensitive significantly to changes in any of the three parameters of con-
trast, line number, or RT (p>0.24 for Spearman’s correlation in all but one case, for which p>0.098,
i.e. still non-significant). This means that while task difficulty reliably influenced subjects errors
and uncertainty levels, it left the calibration between the two essentially unaltered, suggesting that
subjects used a single, universal internal scale of uncertainty – in line with theories of probabilistic
representations.
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Figure 3: Control measures. The experiment gives veridical trial-by-trial information about sub-
jects’ error and subjective uncertainty. A. The distributions of the test line segments’ true and re-
ported orientation. B. Trial-by trial correspondence between the line segments’ true and reported
orientation across all subjects and trial (N=5). C. Trajectories of strokes for all subjects normalized
between (0;0) and (1;0).

(mean±s.e.) with standard deviation of 160±30 msec. This suggests that subjects drew the line
segments with a fast, single stroke without much explicit cognitive deliberation or modulation by
different aspects of the task.

4.2 The representation of error and uncertainty

Next, we tested whether subjects’ uncertainty reports were predictive of their estimation errors.
Figure 4 shows a typical subject’s result with trials binned by reported uncertainty and the resulting
error histograms fitted with a circular Gaussian. The error distribution remained centered at zero,
but showed a clearly increasing spread as the subject’s subjective report of uncertainty about the
correctness of the trial increased.

Figure 5 shows the same fitted circular Gaussians to each subject together with the underlying scatter
plots of (absolute error) vs. reported uncertainty. Despite individual variations, each subject showed
the same general relation of increasing uncertainty corresponding to steadily increasing error in
their performance. This suggests that subjects had a reliable representation of the quality of their
perceptual information and faithfully reported this through their stroke. Thus, our experimental
paradigm and response method successfully captured subjects’ trial-by-trial error and uncertainty.

4.3 The effect of task difficulty on error, uncertainty and their correlation

We investigated how task difficulty affects subjects’ error level, uncertainty and the correlation be-
tween the two. As task difficulty increased either by increasing the number of line segments in the
display or by decreasing the contrast of the target segment, both the error rate and uncertainty of the
judgment increased significantly (Figure 6, 1st column, top two panels; the absolute value of Spear-
man’s ⇢ was between 0.60 and 0.95, with p<0.002 in all cases). Expressed in terms of reaction times
(RTs), we found the same trend: as RTs increased, presumably due to finding the trial more difficult
either because of the nature of the sensory input (more segments, less contrast) or for some other
reason (e.g. lapse of attention, or focusing on an irrelevant part of the display), both subjects’ errors
and level of uncertainty increased significantly (Figure 6, 1st column, bottom panel; Spearman’s
⇢>0.87, with p<0.001 in both cases). Thus all three manipulations had a significant modulatory
effect on both error and uncertainty of subjects’ response. Importantly, however, these finding were
in contrast with the effect of task difficulty on the error-uncertainty regression. We quantified the
effect of task on the error-uncertainty regression by first selecting trials based on either number of
line segments, contrast level, or RT duration for each subject, and then taking the slope and intercept
of the regression line fitted to data collected in these trials (Figure 6, right two columns). Neither the
slope nor the intercept were sensitive significantly to changes in any of the three parameters of con-
trast, line number, or RT (p>0.24 for Spearman’s correlation in all but one case, for which p>0.098,
i.e. still non-significant). This means that while task difficulty reliably influenced subjects errors
and uncertainty levels, it left the calibration between the two essentially unaltered, suggesting that
subjects used a single, universal internal scale of uncertainty – in line with theories of probabilistic
representations.
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Figure 6: Average error and uncertainty depend on task difficulty, but not the calibration
of uncertainty against error. Top row: dependencies on the number of line segments. Middle
row: dependencies on the amount of contrast. Bottom row: dependencies on reaction time. Left
column: average error rates and uncertainty levels. Middle column: the slope of the error-uncertainty
regression. Right column: the y-intercept of the error-uncertainty regression.

5 Discussion

In this paper, we a) presented a new hypothesis about the role of time in perceptual decision making
based on the idea of sequential approximative probabilistic computation in the cortex, b) derived
models and analytical predictions as to how to detect behaviorally whether this proposed role or
evidence integration dominates the decision making, c) developed a novel paradigm for testing the
models predictions, and d) after conducting the experiment, we confirmed that, indeed, humans
show the hallmarks of probabilistic sampling in perceptual decision making tasks. We envision two
aspects of our contribution to be of significance for the field of computational neuroscience. First,
our paradigm involved orientation estimation, arguably one of the simplest perceptual decision mak-
ing tasks, and our results showed that the uncertainty-error correlation is not affected by dramatic
changes in task difficulty, such as 80% contrast variation or 3-fold increase in the number of po-
tential targets. This indicates that uncertainty is not an ”add-on” cognitive metric that is assessed
post-perceptually by a separate process, but rather an essential aspect of sensory representation that
is inherently encoded together with the feature value of the input from the very beginning of the pro-
cessing. This result provides a much needed extension of earlier studies proposing approximative
probabilistic coding in the cortex by generalizing those claims down to the level of early sensory
perception.

Second, our new paradigm allows us to investigate the effect of sampling-based probabilistic coding
with higher sensitivity than it was possible before. Earlier works explored the issue of sampling
with methods that used probability matching as the assay for sampling-based probabilistic coding
and hence, they were limited to focusing on situations with one or just a few samples [19–21].
This technical difficulty led to some confusions as to whether one can see evidence of sampling in
particular tasks. With our method, the effect of sampling can be tracked in the regime of few hundred
samples. Indeed, a rough estimate based on our results suggests that in the present task, samples
might arrive as fast as a couple of milliseconds. This number is feasible only if the cortex uses an
overcomplete representation. Nevertheless, even this speed provides no insurmountable problem to
our method, and thus it opens the possibility to conduct tests in a wide variety of contexts.

Even though we chose sampling as the basis of approximating exact probabilistic inference, this is
not the only method to perform sequential approximation and thus our results are not tied to sam-
pling per se. Belief propagation and expectation propagation are all potentially viable alternatives

7

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

line number

average uncertainty & error

1 2 3 4 5 6
0

10

20

30

 

 uncertainty
error

line number

slope of error − uncertainty regression

1 2 3 4 5 6
0

0.1
0.2
0.3
0.4
0.5

line number

intercept of error − uncer tainty regression

1 2 3 4 5 6
0
2
4
6
8

contrast level (%)

(d
eg

)

10−20 30−40 50−60 70−80 90−100
0

10

20

30

contrast level (%)
(d

eg
/d

eg
)

10−20 30−40 50−60 70−80 90−100
0

0.1
0.2
0.3
0.4
0.5

contrast level (%)

(d
eg

)

10−20 30−40 50−60 70−80 90−100
0
2
4
6
8

reaction time (msec)
500 600 700 800 900 1000 1100

0

10

20

30

reaction time (msec)
500 600 700 800 900 1000 1100

0
0.1
0.2
0.3
0.4
0.5

reaction time (msec)
500 600 700 800 900 1000 1100

0
2
4
6
8

(d
eg

)
(d

eg
)

(d
eg

)
(d

eg
)

(d
eg

/d
eg

)
(d

eg
/d

eg
)

Figure 6: Average error and uncertainty depend on task difficulty, but not the calibration
of uncertainty against error. Top row: dependencies on the number of line segments. Middle
row: dependencies on the amount of contrast. Bottom row: dependencies on reaction time. Left
column: average error rates and uncertainty levels. Middle column: the slope of the error-uncertainty
regression. Right column: the y-intercept of the error-uncertainty regression.

5 Discussion

In this paper, we a) presented a new hypothesis about the role of time in perceptual decision making
based on the idea of sequential approximative probabilistic computation in the cortex, b) derived
models and analytical predictions as to how to detect behaviorally whether this proposed role or
evidence integration dominates the decision making, c) developed a novel paradigm for testing the
models predictions, and d) after conducting the experiment, we confirmed that, indeed, humans
show the hallmarks of probabilistic sampling in perceptual decision making tasks. We envision two
aspects of our contribution to be of significance for the field of computational neuroscience. First,
our paradigm involved orientation estimation, arguably one of the simplest perceptual decision mak-
ing tasks, and our results showed that the uncertainty-error correlation is not affected by dramatic
changes in task difficulty, such as 80% contrast variation or 3-fold increase in the number of po-
tential targets. This indicates that uncertainty is not an ”add-on” cognitive metric that is assessed
post-perceptually by a separate process, but rather an essential aspect of sensory representation that
is inherently encoded together with the feature value of the input from the very beginning of the pro-
cessing. This result provides a much needed extension of earlier studies proposing approximative
probabilistic coding in the cortex by generalizing those claims down to the level of early sensory
perception.

Second, our new paradigm allows us to investigate the effect of sampling-based probabilistic coding
with higher sensitivity than it was possible before. Earlier works explored the issue of sampling
with methods that used probability matching as the assay for sampling-based probabilistic coding
and hence, they were limited to focusing on situations with one or just a few samples [19–21].
This technical difficulty led to some confusions as to whether one can see evidence of sampling in
particular tasks. With our method, the effect of sampling can be tracked in the regime of few hundred
samples. Indeed, a rough estimate based on our results suggests that in the present task, samples
might arrive as fast as a couple of milliseconds. This number is feasible only if the cortex uses an
overcomplete representation. Nevertheless, even this speed provides no insurmountable problem to
our method, and thus it opens the possibility to conduct tests in a wide variety of contexts.

Even though we chose sampling as the basis of approximating exact probabilistic inference, this is
not the only method to perform sequential approximation and thus our results are not tied to sam-
pling per se. Belief propagation and expectation propagation are all potentially viable alternatives

7

significant non-significant

line number

average uncertainty & error

uncertainty
error

line number

slope of error − uncertainty regression

1 2 3 4 5 6
0

0.1
0.2
0.3
0.4
0.5

line number

intercept of error − uncertainty regression

1 2 3 4 5 6
0

2

4

6

8

contrast level (%)

(d
eg

)

contrast level (%)

(d
eg

/d
eg

)

10−20 30−40 50−60 70−80 90−100
0

0.1
0.2
0.3
0.4
0.5

contrast level (%)

(d
eg

)

10−20 30−40 50−60 70−80 90−100
0

2

4

6

8

reaction time (msec) reaction time (msec)
500 600 700 800 900 1000 1100

0
0.1
0.2
0.3
0.4
0.5

reaction time (msec)
500 600 700 800 900 1000 1100

0

2

4

6

8

(d
eg

)
(d

eg
)

(d
eg

)
(d

eg
)

(d
eg

/d
eg

)
(d

eg
/d

eg
)

1 2 3 4 5 6

10
15
20
25
30

1 2 3 4 5 6

6
8
10
12
14

30−40 50−60 70−80 90−100
16

18

20

22

10−20

8

9

10

500 600 700 800 900 1000 1100

10

20

30

6

10

14

(deg)
(deg)

(deg)

Lengyel et al, arXiv 2015

http://www.eng.cam.ac.uk/~m.lengyel


Máté Lengyel  |  Neural representations of uncertainty http://www.eng.cam.ac.uk/~m.lengyelBernstein workshop “Neural sampling”, Göttingen, 12 September 2017

EFFECTS OF TASK DIFFICULTY

21

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

line number

average uncertainty & error

1 2 3 4 5 6
0

10

20

30

 

 uncertainty
error

line number

slope of error − uncertainty regression

1 2 3 4 5 6
0

0.1
0.2
0.3
0.4
0.5

line number

intercept of error − uncer tainty regression

1 2 3 4 5 6
0
2
4
6
8

contrast level (%)

(d
eg

)

10−20 30−40 50−60 70−80 90−100
0

10

20

30

contrast level (%)

(d
eg

/d
eg

)
10−20 30−40 50−60 70−80 90−100

0
0.1
0.2
0.3
0.4
0.5

contrast level (%)

(d
eg

)

10−20 30−40 50−60 70−80 90−100
0
2
4
6
8

reaction time (msec)
500 600 700 800 900 1000 1100

0

10

20

30

reaction time (msec)
500 600 700 800 900 1000 1100

0
0.1
0.2
0.3
0.4
0.5

reaction time (msec)
500 600 700 800 900 1000 1100

0
2
4
6
8

(d
eg

)
(d

eg
)

(d
eg

)
(d

eg
)

(d
eg

/d
eg

)
(d

eg
/d

eg
)

Figure 6: Average error and uncertainty depend on task difficulty, but not the calibration
of uncertainty against error. Top row: dependencies on the number of line segments. Middle
row: dependencies on the amount of contrast. Bottom row: dependencies on reaction time. Left
column: average error rates and uncertainty levels. Middle column: the slope of the error-uncertainty
regression. Right column: the y-intercept of the error-uncertainty regression.

5 Discussion

In this paper, we a) presented a new hypothesis about the role of time in perceptual decision making
based on the idea of sequential approximative probabilistic computation in the cortex, b) derived
models and analytical predictions as to how to detect behaviorally whether this proposed role or
evidence integration dominates the decision making, c) developed a novel paradigm for testing the
models predictions, and d) after conducting the experiment, we confirmed that, indeed, humans
show the hallmarks of probabilistic sampling in perceptual decision making tasks. We envision two
aspects of our contribution to be of significance for the field of computational neuroscience. First,
our paradigm involved orientation estimation, arguably one of the simplest perceptual decision mak-
ing tasks, and our results showed that the uncertainty-error correlation is not affected by dramatic
changes in task difficulty, such as 80% contrast variation or 3-fold increase in the number of po-
tential targets. This indicates that uncertainty is not an ”add-on” cognitive metric that is assessed
post-perceptually by a separate process, but rather an essential aspect of sensory representation that
is inherently encoded together with the feature value of the input from the very beginning of the pro-
cessing. This result provides a much needed extension of earlier studies proposing approximative
probabilistic coding in the cortex by generalizing those claims down to the level of early sensory
perception.

Second, our new paradigm allows us to investigate the effect of sampling-based probabilistic coding
with higher sensitivity than it was possible before. Earlier works explored the issue of sampling
with methods that used probability matching as the assay for sampling-based probabilistic coding
and hence, they were limited to focusing on situations with one or just a few samples [19–21].
This technical difficulty led to some confusions as to whether one can see evidence of sampling in
particular tasks. With our method, the effect of sampling can be tracked in the regime of few hundred
samples. Indeed, a rough estimate based on our results suggests that in the present task, samples
might arrive as fast as a couple of milliseconds. This number is feasible only if the cortex uses an
overcomplete representation. Nevertheless, even this speed provides no insurmountable problem to
our method, and thus it opens the possibility to conduct tests in a wide variety of contexts.

Even though we chose sampling as the basis of approximating exact probabilistic inference, this is
not the only method to perform sequential approximation and thus our results are not tied to sam-
pling per se. Belief propagation and expectation propagation are all potentially viable alternatives
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5 Discussion

In this paper, we a) presented a new hypothesis about the role of time in perceptual decision making
based on the idea of sequential approximative probabilistic computation in the cortex, b) derived
models and analytical predictions as to how to detect behaviorally whether this proposed role or
evidence integration dominates the decision making, c) developed a novel paradigm for testing the
models predictions, and d) after conducting the experiment, we confirmed that, indeed, humans
show the hallmarks of probabilistic sampling in perceptual decision making tasks. We envision two
aspects of our contribution to be of significance for the field of computational neuroscience. First,
our paradigm involved orientation estimation, arguably one of the simplest perceptual decision mak-
ing tasks, and our results showed that the uncertainty-error correlation is not affected by dramatic
changes in task difficulty, such as 80% contrast variation or 3-fold increase in the number of po-
tential targets. This indicates that uncertainty is not an ”add-on” cognitive metric that is assessed
post-perceptually by a separate process, but rather an essential aspect of sensory representation that
is inherently encoded together with the feature value of the input from the very beginning of the pro-
cessing. This result provides a much needed extension of earlier studies proposing approximative
probabilistic coding in the cortex by generalizing those claims down to the level of early sensory
perception.

Second, our new paradigm allows us to investigate the effect of sampling-based probabilistic coding
with higher sensitivity than it was possible before. Earlier works explored the issue of sampling
with methods that used probability matching as the assay for sampling-based probabilistic coding
and hence, they were limited to focusing on situations with one or just a few samples [19–21].
This technical difficulty led to some confusions as to whether one can see evidence of sampling in
particular tasks. With our method, the effect of sampling can be tracked in the regime of few hundred
samples. Indeed, a rough estimate based on our results suggests that in the present task, samples
might arrive as fast as a couple of milliseconds. This number is feasible only if the cortex uses an
overcomplete representation. Nevertheless, even this speed provides no insurmountable problem to
our method, and thus it opens the possibility to conduct tests in a wide variety of contexts.

Even though we chose sampling as the basis of approximating exact probabilistic inference, this is
not the only method to perform sequential approximation and thus our results are not tied to sam-
pling per se. Belief propagation and expectation propagation are all potentially viable alternatives
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5 Discussion

In this paper, we a) presented a new hypothesis about the role of time in perceptual decision making
based on the idea of sequential approximative probabilistic computation in the cortex, b) derived
models and analytical predictions as to how to detect behaviorally whether this proposed role or
evidence integration dominates the decision making, c) developed a novel paradigm for testing the
models predictions, and d) after conducting the experiment, we confirmed that, indeed, humans
show the hallmarks of probabilistic sampling in perceptual decision making tasks. We envision two
aspects of our contribution to be of significance for the field of computational neuroscience. First,
our paradigm involved orientation estimation, arguably one of the simplest perceptual decision mak-
ing tasks, and our results showed that the uncertainty-error correlation is not affected by dramatic
changes in task difficulty, such as 80% contrast variation or 3-fold increase in the number of po-
tential targets. This indicates that uncertainty is not an ”add-on” cognitive metric that is assessed
post-perceptually by a separate process, but rather an essential aspect of sensory representation that
is inherently encoded together with the feature value of the input from the very beginning of the pro-
cessing. This result provides a much needed extension of earlier studies proposing approximative
probabilistic coding in the cortex by generalizing those claims down to the level of early sensory
perception.

Second, our new paradigm allows us to investigate the effect of sampling-based probabilistic coding
with higher sensitivity than it was possible before. Earlier works explored the issue of sampling
with methods that used probability matching as the assay for sampling-based probabilistic coding
and hence, they were limited to focusing on situations with one or just a few samples [19–21].
This technical difficulty led to some confusions as to whether one can see evidence of sampling in
particular tasks. With our method, the effect of sampling can be tracked in the regime of few hundred
samples. Indeed, a rough estimate based on our results suggests that in the present task, samples
might arrive as fast as a couple of milliseconds. This number is feasible only if the cortex uses an
overcomplete representation. Nevertheless, even this speed provides no insurmountable problem to
our method, and thus it opens the possibility to conduct tests in a wide variety of contexts.

Even though we chose sampling as the basis of approximating exact probabilistic inference, this is
not the only method to perform sequential approximation and thus our results are not tied to sam-
pling per se. Belief propagation and expectation propagation are all potentially viable alternatives
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based on the idea of sequential approximative probabilistic computation in the cortex, b) derived
models and analytical predictions as to how to detect behaviorally whether this proposed role or
evidence integration dominates the decision making, c) developed a novel paradigm for testing the
models predictions, and d) after conducting the experiment, we confirmed that, indeed, humans
show the hallmarks of probabilistic sampling in perceptual decision making tasks. We envision two
aspects of our contribution to be of significance for the field of computational neuroscience. First,
our paradigm involved orientation estimation, arguably one of the simplest perceptual decision mak-
ing tasks, and our results showed that the uncertainty-error correlation is not affected by dramatic
changes in task difficulty, such as 80% contrast variation or 3-fold increase in the number of po-
tential targets. This indicates that uncertainty is not an ”add-on” cognitive metric that is assessed
post-perceptually by a separate process, but rather an essential aspect of sensory representation that
is inherently encoded together with the feature value of the input from the very beginning of the pro-
cessing. This result provides a much needed extension of earlier studies proposing approximative
probabilistic coding in the cortex by generalizing those claims down to the level of early sensory
perception.

Second, our new paradigm allows us to investigate the effect of sampling-based probabilistic coding
with higher sensitivity than it was possible before. Earlier works explored the issue of sampling
with methods that used probability matching as the assay for sampling-based probabilistic coding
and hence, they were limited to focusing on situations with one or just a few samples [19–21].
This technical difficulty led to some confusions as to whether one can see evidence of sampling in
particular tasks. With our method, the effect of sampling can be tracked in the regime of few hundred
samples. Indeed, a rough estimate based on our results suggests that in the present task, samples
might arrive as fast as a couple of milliseconds. This number is feasible only if the cortex uses an
overcomplete representation. Nevertheless, even this speed provides no insurmountable problem to
our method, and thus it opens the possibility to conduct tests in a wide variety of contexts.
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not the only method to perform sequential approximation and thus our results are not tied to sam-
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5 Discussion

In this paper, we a) presented a new hypothesis about the role of time in perceptual decision making
based on the idea of sequential approximative probabilistic computation in the cortex, b) derived
models and analytical predictions as to how to detect behaviorally whether this proposed role or
evidence integration dominates the decision making, c) developed a novel paradigm for testing the
models predictions, and d) after conducting the experiment, we confirmed that, indeed, humans
show the hallmarks of probabilistic sampling in perceptual decision making tasks. We envision two
aspects of our contribution to be of significance for the field of computational neuroscience. First,
our paradigm involved orientation estimation, arguably one of the simplest perceptual decision mak-
ing tasks, and our results showed that the uncertainty-error correlation is not affected by dramatic
changes in task difficulty, such as 80% contrast variation or 3-fold increase in the number of po-
tential targets. This indicates that uncertainty is not an ”add-on” cognitive metric that is assessed
post-perceptually by a separate process, but rather an essential aspect of sensory representation that
is inherently encoded together with the feature value of the input from the very beginning of the pro-
cessing. This result provides a much needed extension of earlier studies proposing approximative
probabilistic coding in the cortex by generalizing those claims down to the level of early sensory
perception.

Second, our new paradigm allows us to investigate the effect of sampling-based probabilistic coding
with higher sensitivity than it was possible before. Earlier works explored the issue of sampling
with methods that used probability matching as the assay for sampling-based probabilistic coding
and hence, they were limited to focusing on situations with one or just a few samples [19–21].
This technical difficulty led to some confusions as to whether one can see evidence of sampling in
particular tasks. With our method, the effect of sampling can be tracked in the regime of few hundred
samples. Indeed, a rough estimate based on our results suggests that in the present task, samples
might arrive as fast as a couple of milliseconds. This number is feasible only if the cortex uses an
overcomplete representation. Nevertheless, even this speed provides no insurmountable problem to
our method, and thus it opens the possibility to conduct tests in a wide variety of contexts.

Even though we chose sampling as the basis of approximating exact probabilistic inference, this is
not the only method to perform sequential approximation and thus our results are not tied to sam-
pling per se. Belief propagation and expectation propagation are all potentially viable alternatives
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aspects of our contribution to be of significance for the field of computational neuroscience. First,
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ing tasks, and our results showed that the uncertainty-error correlation is not affected by dramatic
changes in task difficulty, such as 80% contrast variation or 3-fold increase in the number of po-
tential targets. This indicates that uncertainty is not an ”add-on” cognitive metric that is assessed
post-perceptually by a separate process, but rather an essential aspect of sensory representation that
is inherently encoded together with the feature value of the input from the very beginning of the pro-
cessing. This result provides a much needed extension of earlier studies proposing approximative
probabilistic coding in the cortex by generalizing those claims down to the level of early sensory
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with methods that used probability matching as the assay for sampling-based probabilistic coding
and hence, they were limited to focusing on situations with one or just a few samples [19–21].
This technical difficulty led to some confusions as to whether one can see evidence of sampling in
particular tasks. With our method, the effect of sampling can be tracked in the regime of few hundred
samples. Indeed, a rough estimate based on our results suggests that in the present task, samples
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overcomplete representation. Nevertheless, even this speed provides no insurmountable problem to
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