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Abstract

Bayesian models have been successful in explaining human and animal behavior,
but the extent to which they can also explain neural activity is still an open question.
A major obstacle to answering this question is that current methods for generating
neural predictions require detailed and specific assumptions about the encoding
of posterior beliefs in neural responses, with no consensus or decisive data about
the nature of this encoding. Here, we present a new method and prove conditions
for its validity, that overcomes these challenges for a wide class of probabilistic
encodings — including the two major classes of neural sampling and distributed
distributional codes. Our method tests whether the relationships between the model
posteriors for different stimuli match the relationships between the corresponding
neural responses — akin to representational similarity analysis (RSA), a widely used
method for nonprobabilistic models. Finally, we present a new model comparison
diagnostic for our method, based not on the agreement of the model with the data
directly, but on the alignment of the model and data when injecting noise in our
neural prediction generation method. We illustrate our method using simulated V1
data and compare two Bayesian models that are practically indistinguishable using
behavior alone. Our results show a powerful new way to rigorously test Bayesian
models on neural data.

1 Introduction

Bayesian computational models have been successfully used to explain animal and human behavior.
Previous studies have shown that Bayesian models can capture not only perceptual processes (e.g.,
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[11, 23,24, 29]) and perceptual decision-making (e.g., [16, [32]), motor learning (e.g., [18, 26]),
perceptual learning (e.g., [[14]]), and statistical learning (e.g., [41]) but also higher-level cognition such
as abstract concept formation (e.g., [30}{46]), language acquisition (e.g., [51]), and rule learning (e.g.,
[13]). Thus, the Bayesian modeling framework has the potential to capture the full complexity of
the computations that underlie human perception, cognition, and learning [[31]]. Testing the Bayesian
Brain Hypothesis [25] using neural data has therefore been of great interest in systems neuroscience
[12} 43]]. There are two key elements to testing the Bayesian Brain Hypothesis using neural activity.
First, what is the generative (Bayesian) model in which the brain performs inference and which
defines the posterior over the latent variables of the brain? Second, how are posterior beliefs encoded
in neural activity?

Simplified assumptions about the brain’s generative model: Broadly speaking, there are two main
ways in which generative models have been constructed. First, researchers have derived their models
from a task (ideal observer model), assuming that the task-relevant variables can be decoded from
neural responses (e.g., [36, 45,|50]). Second, researchers have derived their models from natural
input statistics (e.g., [39,44]) and linked posterior beliefs to neural activity by making very specific
assumptions such as ‘neural sampling’ (e.g., [12, 20, |40]). Although the two approaches have
diverged widely (see [34] for a summary), both use models that drastically simplify the rich internal
model that the brain likely uses. Models derived from tasks that do not cover the range of natural
behavior and consider only a few task-relevant variables and specific stimuli (e.g., orientation or
motion). Even current image-computable models derived from natural input statistics ignore many
stimulus dimensions, e.g., color or binocular disparity. Therefore, it is unclear under what conditions
we can expect the neural predictions of a simplified Bayesian model to match the measured neural
data, even if the assumed neural encoding of probabilities is correct.

No consensus how probabilities are encoded neurally: There are two major classes of theories of
how the brain might encode probabilities mirroring the principal ways to perform Bayesian inference
in machine learning: sampling-based codes (neural sampling, assuming that the neural activity
represents samples from a posterior, e.g., [6, |12, |17, 20, |40]), and parametric codes (including
Probabilistic Population Codes (PPCs), assuming that neural activities are linearly related to log
probabilities, e.g., [1,[36,45] and Distributed Distributional Codes (DDCs), assuming that neural
activities are linearly related to probabilities, e.g., [48, 49]). However, despite multiple studies
presenting evidence in favor of one of these codes, decisive evidence in favor of one and against
the other codes is still missing ([2,|12,[34,/43], but see [47]). Therefore, it is unclear which code to
assume when testing a specific Bayesian model, especially since each code usually requires several
additional unknown parameters.

Main contributions: Our work (partially) overcomes the two challenges of model simplification
and unknown encoding by providing a method for testing Bayesian models with neural data that
is independent of the specific details of the encoding, as long as the encoding is part of two of the
three major previously proposed encoding schemes (neural sampling and DDCs). We analytically
derive the conditions under which our method allows for correct predictions of neural responses and
illustrate them with ground truth simulations by comparing two qualitatively different probabilistic
models of cortical area V1. Finally, we present a new model comparison diagnostic for our method,
based not on the agreement of the model with the data directly, but on the alignment of model and
data.

2 Results

2.1 Generating neural predictions

The Bayesian brain framework [[12} 43]] assumes that the brain infers the states of latent variables, z,
given sensory observations, o, forming a posterior belief, p (z | 0,). The neural activity is assumed
to encode the brain’s beliefs about the posterior probability distribution:

p(T‘ | Oz) = Rp(z)—m(r) [p(z | Oz)] (1)

where 7 denotes the neural activity, and R(.)—(r) is the encoding mapping from p () to p (r).

9, ¢

Importantly, only p(r) is directly observable by the “scientist”, while the brain’s “true” latent variables,
z, and its “true” internal model are unknown. Current models are highly simplified based on simplified
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Figure 1: Our method: Comparing the relationship between the posteriors for the baseline and test
stimuli (left, blue background) to the relationship between the neural responses to the baseline and
test stimuli (right, yellow background). Using the scientist’s Bayesian model, we fit the mixture
weights, w, to match the posterior for a test stimulus, p(x | 0*"), as a mixture of posteriors for some
baseline stimuli, p(x | 0®®»). We then combine the neural responses to the baseline stimuli, /%~
with the same mixture weights, w, to predict the neural response to the test stimulus, 7.
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inputs and/or specific tasks. To understand the conditions under which such a simplified, “scientist”

model, p (z]o,), can correctly predict neural responses, r, we first relate it to the brain’s “true” model:
Mo sp(z)
—_———
p(z|02):/p(z|x,oz\z)p(x\oz) dz 2)

where x and o, represent the latent variables and the observations in the scientist’s model, respectively.
M () denotes the mapping from the scientist’s to the brain’s model and 0.\, denotes the subset
of the brain’s observations that are not shared with the “scientist model” (e.g., the color of a visual
stimulus when the “scientist model” only assumes black and white observations). Thus, the probability
over the neural activity given the observations can be written as follows:

p (T | Oz) = Rp(z)—>p(r) |:/Mr—>p(z) (.’E, Oz\z) p(l' | OIL’) dx (3)

Previous studies had to make specific assumptions about the nature of Ry,(;)_p(r), €.8., neural sam-
pling, PPC, or DDC, to make concrete neural predictions. They also ignored the difference between
their assumed generative model and the brain’s actual generative model without any guarantees that
their model prediction would match the neural data even if the assumed neural code, R, (2)—p(r),
were correct.

2.2  Our method

The idea behind our method is to compare the relationships between the posteriors computed for a
set of stimuli using our Bayesian model to the relationship between the measured neural activities
in responses to the same set of stimuli (Fig. [I). To this end, we formalize how to extrapolate from
measured neural activities in responses to a set of simple ‘baseline’ stimuli using the relationships
between the posteriors in the Bayesian model to predict the neural responses to complex ‘test’ stimuli
(Figs. [[ & [2). Instead of making a specific (and probably incorrect) assumption about how the
brain represents probabilities, we use the measured baseline responses (Fig. 2 D) together with the
posteriors predicted by the Bayesian model for each baseline stimulus (Fig. 2] A) as a kind of look-up
table. This table contains the link between posteriors in the scientist model and neural responses,
combining M,y and Ry, (.)—p(r). Instead of making assumptions about the neural code, we
measure it directly using the baseline stimuli.

This idea results in a simple linear extrapolation method for a wide class of encoding schemes called
Linear distribution codes (LDCs) [33]. LDCs are defined by the property that the representation of a
mixture of distributions corresponds to the weighted average of the representations of the individual
mixture components [33]:

Rop(z)—n(r) Z wipi(2)| = ZwiRp(z)—xD(r) pi(2)]. 4)
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Figure 2: Generating neural predictions from a Bayesian model using our method. A-C: Step 1,
fitting the weights, w (B), to match the posterior for the test stimulus as a mixture of the posteriors
for the baseline stimuli (C). x1, 2, 0"° and 0 denote the latent variables and the observations
when the baseline or the test stimulus is observed, respectively. C: Show the posterior for the test
stimulus and its approximation by the mixture of the posteriors for the baselines. D, B & E: Step
2, using the weights (w) to extrapolate from the measured neural responses to the baseline stimuli
(D) to predict the neural response to the test stimulus (E). 7°%*¢ and r**** denote the neural activity in

response to the baseline and the test stimuli, respectively.

Importantly, this property (which defines an affine mapping since ) |, w; = 1 [38]) holds for both
neural sampling schemes and all DDCs, but not for PPCs or expectile codes.

The central result of our paper is the following. If a (test) posterior can be expressed as a mixture of
(baseline) posteriors in the scientist model, then the neural response to the test stimulus (assuming
an LDC) is a linear combination of the neural responses to the baseline stimuli using the posterior
mixture weights as linear coefficients (Fig. [I)).

To prove this, first, we write the neural activity in response to the test stimuli using eq. (3):

p(rtest) _ Rp(z)—m(?“) {/ Mac—>p(z) (x,Oeritx) ($ | OteS‘) d$:| 4)

Next, using mixture weights w;, we approximate the posterior for the test stimulus, p (z | o), as
a mixture of baseline posteriors, computed for the baseline stimuli (Figl2 A-C, Step 1: Posterior
matching):

l‘ | Olest szp T | Obasel) . (6)

Assuming that the brain’s observations that are not modeled by the “scientist model” (OZ\T) are the
same when responses to baseline and test stimuli are measured, we can substitute eq. (6) into (5):

p(rteSl) ~ 7zp(z)—)p(r) /Ma:—>p(z) (I, 02??) Z w;p (I | OZasei) dz (7)

If the encoding, Rp(z)_ﬂ,(r), is an LDC, we can rewrite eq. as:

p(rbassi>
™) = Y wi Ry(a)opr) { / Moy (025 ) p (2 | o) } Zw ) @)




This means we can measure the neural activity in response to some baseline stimuli and use a
weighted mixture of those measurements to predict the neural activity in response to the desired zest
stimuli. This way, we use the brain’s "true’ model with its encoding directly by measuring it in an
experiment with the baseline stimuli, and we do not need to make any assumptions about R (2) s p(r)
or M, _, (=) other than that R (), (,) is an LDC and that o, ,, is common for the baseline and test
stimuli. Note that this latter assumption is inherent to all laboratory measurements where all aspects
of the stimulus apart from the parameter of interest are held fixed. In practice, it is not always feasible
to keep all variables constant except those under study. Still, the hope in such experiments is that this
variability will average out in those cases, and only add noise, but not bias to ones measurements.
However, this issue is not unique to our method; instead, it is a challenge inherent in experimenting in
general. Crucially, the weights w; are determined by the scientist model, p(x|o, ), and reflect how the
baseline posteriors and the test posterior are related. This relationship makes an empirically testable
prediction about how the empirical responses to the baseline stimuli should be related to the empirical
response to the test stimulus.

2.3 The two steps to generate neural predictions from Bayesian models

Step 1: Posterior matching in the scientist model: determine w; such that
Pl o)~ S wip (o | o)

Step 2: Predict response to test stimulus as the weighted average of baseline activities
P (,rlest) ~ zl w; p (Tbasei)

The first step only requires us to compute the posteriors using our Bayesian model, while the second
step requires us to measure neural activities in response to the baseline stimuli. Importantly, the
quality of the neural prediction depends on the ability of the scientist’s model to correctly capture
the relationship between the brain’s posteriors for the baseline and for the test stimuli. Critically,
the relationships predicted by different models differ depending on the nature of their latents. This
allows us to use neural data to compare different models, even if they make identical behavioral
predictions. The quality of the prediction using this method depends only on the scientist’s model,
and it is agnostic to what the brain’s true encoding is as long as it is an LDC.

2.4 The relationship between the posterior matching error and the neural prediction error

The error in the neural prediction will reflect the extent to

P\ s which the scientist’s model can capture the brain’s com-
putations in the context of the stimuli only if, we can per-
fectly match the test posterior as a mixture of the baseline
posteriors in the posterior matching step (Figl2 A-C). If
we cannot perfectly match the test posterior in the weight-
LA fitting step, this introduces an additional source of error
0,0 0" in the neural prediction step. In general, one can expect
R that for a ‘good’ model, the better the mixture of base-
P line posteriors matches the test posterior, the smaller the
£ > error in the neural predictions will be. Interestingly, we

Error in posterior matching . .
(variational distance) could show (in general for binary and under reasonable

assumptions for categorical latents, see App.
Figure 3: The relationship between that the relationship between the posterior matching error
neural prediction error and posterior (quantified as variational distance) and neural response
matching error. error is perfectly linear for the correct (true brain) model

(Fig. [3). On the other hand, it does not hold for models
that are mismatched: the neural error will not be zero for zero posterior matching error, and the
correlation between both types of errors will be less than one since a set of mixture weights that yield
a poor posterior match may produce a weighted average of neural responses that, by chance, match
the empirically observed response to the test stimulus. Overall, this suggests that better models should
imply a tighter correlation between posterior error and neural error, which we have also observed in
our simulations (see Fig. [7] & Fig[S6|for a couple of example neurons).
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Figure 4: Illustration of method using ground truth simulations. A: Examples of baseline (top)
and test stimuli (bottom). B: The ground truth model from which we generated simulated neural data.
C: The two Bayesian models being compared.

2.5 A new diagnostic for model comparison

The relationship between the error in the posterior matching and the error in the neural prediction
demonstrates the importance of controlling for the posterior matching error when comparing models.
Without such control, we can’t discern whether the difference between the models’ prediction errors
is due to different posterior matching errors or if one model genuinely aligns more closely with the
brain than the other. Therefore, we developed a new diagnostic for model comparison based on how
tightly the posterior matching error is coupled to the neural prediction error. This diagnostic doesn’t
depend on the absolute value in the posterior matching and it can be computed with the following
weight perturbation analysis:

For each test stimulus

1. Generate neural predictions using Steps 1 & 2 above (section [2.3).

2. Generate many sets of perturbed weights (w) that deviate from the weights, fitted in the
previous point, providing the best possible match for the test posterior. E.g., w!"" ~
Dirichlet(w?*™" ).

3. Generate neural predictions using Step 2 (section[2.3) for the sets of perturbed weights.

4. Assess the strength of the relationship (e.g., using a correlation coefficient) between the error
in the posterior matching and the error in the neural prediction for the perturbed weights.
(Optionally, convert this to an error metric, e.g., 1-correlation)

Our numerical experiments using ground truth simulations confirm the value of this metric and show
that it provides complementary information in many cases in which the traditional root mean squared
error (RMSE) metric for model quality is the same for two competing models (see App. [A.3.6|for
more details and Fig. [7 & Fig[S6). Traditional metrics of model fit (here, RMSE) evaluate only
one point of the relationship between the neural prediction and the posterior matching error when
the posterior matching error is zero. Our new metric provides information about the strength of the
relationship between the two errors when the posterior error is different from zero.

2.6 Validation & illustration of the method

Using a simulated ground truth model, we demonstrate the validity of our approach and its applicabil-
ity in comparing two Bayesian models. Since validating a method requires data for which the ground
truth is known, and no such neurophysiological data exists, we relied on synthetic data. We simulated
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Figure 5: The neural predictions for a representative neuron. A: Empirical (black) and predicted
tuning curves for the ground truth (orange), grating (blue), and orientation (red) models for 14
example test stimuli. B: The empirical as a function of the predicted firing rates for all test stimuli.
Closer to the diagonal represents better predictions. Brown squares and black points represent the
baseline and the test stimuli, respectively. Left inset: projective field of the neuron.

ground truth neural data from a binary sparse coding image model for V1 trained on natural images
(5] (FiglB). The binary latent variables (z, binary vector) represent 128 projective fields (A, 8 x 8
(image pixels) by 128 (projective fields) matrix). We compare two toy Bayesian models using the
simulated neural data (assuming an orientation discrimination task): 1) a scalar orientation model
derived from the orientation task and 2) a grating Gaussian mixture model derived from the stimulus
images. The orientation model (FigliC, left) assumes that the stimuli are generated from a single
scalar variable, orientation (xg, scalar), using a template function (7'(.)) transforming an orientation
into the image of a grating. The grating model (Fig[dC, right) assumes a Gaussian mixture model
with 24 continuous latent variables (xg, vector) with gratings as projective fields (B, 8 x 8 (image
pixels) by 24 (projective fields) matrix). The spatial frequency of the grating projective fields was
fixed to one, but the orientation (0°,45°,90°, 135°) and the phase (0°, 60°, 120°, 180°, 240°, 300°)
varied. We used 20 single gratings of varying orientation, tiling the space of 0° — 180° for baseline
stimuli. For test stimuli, we used 210 plaids generated by adding two baseline gratings pixel by pixel
(all unique combinations) (Fig[4JA). We chose single gratings and plaids for our stimuli to highlight
the difference between the grating and the orientation models. Since the ground truth mixture model,
similar to the grating mixture model, allows for multiple grating features to be present in the stimuli,
we expect that the grating model will provide better fits to the ground truth model for the test plaids
than the orientation model which tries to capture the plaid with only a single latent feature. Note
that this simulation is meant to demonstrate the use and value of our method in comparing Bayesian
models using neural data, not to provide a realistic model of the actual V1. (See App. [A3]& Fig. [ST]
for more details on the models and the stimuli.)

Although our method can be used for all types of neural data, including population activities and
imaging data, as long as eq. (@) holds, for simplicity, we will illustrate how to use it to predict
single-neuron activities. First, we assume that a single latent variable in the Bayesian models
describes the response of a single neuron. Then, following the two steps in section [2.3] we generate
neural prediction for a single test stimulus by fitting a set of weights to approximate the scientist’s
posterior for the test stimulus as a mixture of baseline posteriors (Fig2JA,B&C). Then, we used those
weights to combine the measured baseline activities to predict the neuron’s activity in response to
the test stimulus (FigZD,C&E). (See these steps in Fig[S3). We repeated this procedure for every
test stimulus. Since the orientation model has a single latent, it produces a single prediction for all
neurons. However, the grating model has multiple latents, and we generated multiple predictions for
the neurons using the marginal posterior over each latent. We then picked the best fitting latent for
each neuron. (See App. [A.3.4 for more details)

First, we demonstrate the validity of our method. We generated neural predictions from the ground
truth model using our method and compared them to the neural predictions of the orientation and the
grating models. We found that the neural predictions of the ground truth model provided significantly
better fits to the simulated activity of the neurons across the test stimuli than the other two models
(Wilcoxon signed-rank test, Ps< 0.05) (see App.[A.3.5]and Fig[5&Fig[S5). This demonstrates that
with our method, we can correctly identify better models.
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Next, we illustrate how to compare the neural predictions of the orientation and the grating models for
a representative neuron. First, by looking at example tuning curves (Fig[5]A), we see that both models
capture the firing rates in response to the test stimuli qualitatively well. Overall, the orientation
model seems to underestimate (Fig[5JA&B in red) while the grating model seems to overestimate the
firing rates (Fig[5B-middle). Interestingly, the two models generated almost identical predictions for
most stimuli (Fig/6B, in black). Most of these test stimuli elicit minimal activity from the simulated
neuron (Fig[6C), and both models accurately predict no activity for these stimuli. Responses to
the diagnostic, controversial stimuli [[15], on the other hand, provided substantial evidence in favor
of either model (Figl6B&D, in green). Considering all diagnostic stimuli, the grating model had
substantially lower RMSE than the orientation model for this representative neuron (Wilcoxon
signed-rank test, ' = 241, P = 0.03, FigEA&D, in green, see other example neurons in Figfs_gl)
Overall, this example highlights that our method allows researchers to choose their stimuli before
experimenting to maximize statistical power in their model comparison.

Finally, we performed the weight perturbation analysis for all the test stimuli for the same representa-
tive neuron. For each test stimulus, we generated 30 sets of perturbed weights. Then, across the 30
sets of weights, we computed the correlation coefficient between the posterior matching error and the
error in the neural prediction. We found that for most of the test stimuli, the correlation coefficients
were larger for the grating model than the orientation model (Wilcoxon signed-rank test, 7" = 12471,
P =3-10~'2, Fig[7B). Importantly, many stimuli, which produced similar neural predictions across
the two models and were found to be non-diagnostic with the RMSE metric, become diagnostic with
this new correlational metric (Figl6[C, see other example neurons in Fig[S5). This implies that in the
context of our method, the weight perturbation analysis provides complementary information to the

neural prediction error, and suggests that it might be a more sensitive diagnostic than the conventional
RMSE.

3 Discussion

Our work makes two main contributions: First, we present a method for generating neural predictions
from Bayesian models that does not depend on the details of how probabilities are encoded in neural
responses as long as the encoding is part of a large class of codes (LDCs), including neural sampling
and DDCs. Second, we present a new metric tailored to our method that is complementary to classic
prediction errors.

Methods for comparing nonprobabilistic models to neural data have yielded many insights into how
the brain processes sensory information (e.g., [8, 21, 22, |27, 28, |37]). Our method is related to
Representational Similarity Analysis (RSA) [9] in that it compares the relationship between model
responses (in our case, posteriors) to a set of stimuli to the relationship between neural responses to
the same set of stimuli. However, it differs from RSA in that RSA compares the relationship between
many model (or neural) responses for pairs of stimuli, while our method compares the relationship
between a single model (or neural) response across many stimuli. Further, RSA is based on 2nd
order summary statistics, while our method makes specific testable predictions for individual neural
responses. Our method is also similar to the main alternative to RSA, deterministic encoding models
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Figure 7: Comparing the two models using the new, correlational diagnostic. A: The correlations
between the error in the neural prediction and the error in the posterior matching for the ground truth
(orange), grating (blue), and orientation (red) models for two example test stimuli. B: Comparing the
same correlations between the two models for all test stimuli. C: The difference of these correlations
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(e.g., [8,21,22,]52,53]), by fitting nuisance variables (the posterior weights in our case, the linear
mapping from units/features to neurons in the case of deterministic encoding models) for training
stimuli, and then testing how well they can predict neural responses to held-out stimuli. Unlike
encoding models, our method does not require a specific mapping from model activations to neural
responses as long as the mapping is part of the LDC family. In that sense, it also differs from prior
studies of probabilistic models that have made specific assumptions about how probabilities are
encoded in neural responses (e.g., PPCs, DDCs, or sampling).

Interestingly, our method can also be viewed as a generalization of [3]], who compared average evoked
activity in the visual cortex to spontaneous activity. Their prediction, derived from the model-based
equality of average posterior being equal to the prior, is a special case of our posterior matching
technique with all posterior weights being one, and base stimuli drawn from the distribution over
natural images.

The main limitation of our method is the assumption of a Linear Distributional Code (LDC). While
motivated by mathematical convenience, it enjoys empirical support both by studies that provide
evidence for one of the various flavors of neural sampling, whether based on binary latents [3| (6, 42],
or continuous latents [17,20,|40], and those that compare LDC and non-LDC (e.g., PPCs) directly
[47]. Most importantly, our method does not assume that the model we test is linear. The posteriors
in the scientists’ models can have arbitrarily nonlinear relationships to the input stimulus. It’s only
the encoding of the posterior in neural responses that we assume to be linear, akin to deterministic
encoding models and RSA [[10].

Although our illustration in the Results section only explicates how to test the model prediction for
a single neuron, it is straightforward to apply it to populations of neurons in two complementary
ways. First, one can apply our Method to all recorded neurons individually and compare population
averages (or distributions) during the model comparison. Second, it is possible to apply our Method
to joint population responses. All our derivations apply to the prediction of joint distributions, p(r),
where 7 is a vector of responses, similar to marginals.

While we have only illustrated our method using the best-fit single latent from a high-dimensional
model (i.e., the grating model), it is also straightforward to extend it to joint posteriors over multidi-
mensional subspaces of x. In practice, the dimensionality of x is primarily limited by one’s ability
to record neural responses to a large enough number of baseline stimuli to fill a multi-dimensional
histogram. This number grows exponentially with the number of dimensions.

In this paper, we distinguished between the baseline and test stimuli for conceptual simplicity.
However, in practice, there is no need for such a categorical distinction, and one can use a leave-one-
out procedure where all stimuli except one are used for baselines, with the remaining one counting as
a test. Choosing stimuli that yield posteriors that can be mixed to approximate the posteriors for a
held-out test stimulus is a crucial step of our method. Implicitly, this is, required for any experiments:
choosing the stimuli that can best test the model’s predictions. E.g., to predict neural responses to the



motion of a particular object, we will need to show some set of moving stimuli, and we won’t be
able to test our predictions with stationary objects. One contribution of our work is to formalize this
process and to take the guesswork out of which stimulus set to choose. Moreover, using our method,
this can be done using the model’s posteriors only, without collecting any neural data.

In future work, it may be possible to develop a more symmetrical method in which sets of weights
are determined both within the model, and within the neural data, with the key comparison being
between summary statistics applied to both sets of weights (similar to RSA).

Finally, the match of posteriors in our method will never be perfect, and the discrepancy may differ
for different models using the same set of baseline stimuli. Therefore, in practice, it is essential to
control for this discrepancy when comparing models. We therefore developed the correlational-based
diagnostic that controls for the different errors in the posterior matching. Our new diagnostic based
on weight perturbations only enjoys a firm analytical basis for binary latents, and for categorical
latents under additional symmetry assumptions for the neural encoding. However, to what degree
these assumptions can be justified empirically remains to be seen. In general, more work is required
to compare the new diagnostic to classic model comparison metrics.
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