Divisive normalization as a mechanism for hierarchical causal inference in motion
perception

Causal inference (CI) has been proposed as a universal computational motif in the brain
. However, its neural implementation is unclear. Likewise, Divisive Normalization (DN) has been
proposed as a canonical circuit motif , but there are competing theories about the compu-
tations that DN implements (gain control, attention). In this work, we unified both by showing how an
extended DN model can account for neural predictions made by a Cl model in the
context of hierarchical motion perception.
Specifically, we generated CI predictions for neural responses to a center-surround stimulus. CI makes in-
teresting predictions for neural responses encoding two latent variables in the model: retinal and relative
velocities. These predictions (supported by preliminary data) resemble the responses of two previously de-
scribed classes of neurons in area MT: those with antagonistic or integrative surround
. We investigated whether DN could be a potential mechanism that implements Cl computations by
fitting it to the ClI predictions. Classic DN postulates that each neuron’s response is divisively modulated
by pooling the activity of neighboring neurons. We analytically showed that a normalization pool that only
incorporates the activities of neurons responding to center and surround stimuli alone cannot explain the
complex Cl responses. Instead, we found that a normalization pool that additionally includes multiplicative
interactions between the center and surround activities can explain our Cl predictions. We used tuning
properties of MT neurons to generate both: (a) biologically-realistic Cl predictions
and (b) a realistic normalization pool. We showed that the same DN model can explain CI neural predic-
tions across different center-surround speeds. Our results suggest that an extended DN architecture, with
interaction terms in the normalization pool, may serve as a mechanism to implement Cl at the neural circuit

level.

Causal inference (Cl) predicts complex center-
surround interactions for neural responses
Our percept of object velocity has been found to
be affected by the velocities of other objects in the
scene. This has been previously modeled as arising
from CI computations with empirical support from
human psychophysics . In
their task, observers’ percept of the center veloc-
ity (green dots) in a classic center-surround stimulus
(Fig. 1A) was biased: (a) towards the surround ve-
locity when the center and surround were inferred
to move together, and (b) towards the relative ve-
locity (blue arrow in Fig. 1A) otherwise. The key
motif in their model (Fig. 1B) inferred the retinal
velocity of the center stimulus as the sum of the
surround velocity and the relative velocity between
the center and the surround. The mixture prior over
the relative velocity “chunked” similarly moving ob-
jects. We show the neural predictions for a neu-
ron encoding the relative velocity (Fig. 2A) for dif-
ferent center-surround speed combinations (differ-
ent panels) and different center-surround direction
combinations (axes) by generating posterior samples
from the model and passing them through the mea-
sured tuning curve of the neuron (method validated
in ). We use previously mea-
sured tuning curves from alert macaque monkeys
to generate the Cl neural

predictions in Fig. 2A. Cl predicts interesting non-
separable interactions between center and surround
velocities for neurons encoding the relative veloc-
ity variable. The predicted response is high when
the inferred relative velocity is close to the neuron’s
preferred velocity (0 deg. preferred direction and 7
deg/s preferred speed). For comparable speeds (first
and fourth panel), center and surround velocities to-
gether determine the response pattern. The peak oc-
curs when the relative velocity (computed by map-
ping each point in the 2D surface to velocity vectors
and taking their difference) is aligned with the neu-
ron’s preferred velocity. However, for large speed dif-
ferences, the larger velocity dominates the relative
velocity resulting in center-dominated (peak of ac-
tivity around 0 deg. center direction, i.e. neuron’s
preferred direction in the third column) or surround-
dominated tuning curves (peak of activity around £
180 deg. surround direction in the second column).
An extension of the classic DN model explains
the responses predicted by CI

At the neural circuit level, the mechanisms by which
Cl computations are implemented remain elusive
(also see ). To explain the
neural predictions from the Cl model, we expanded
the normalization pool of the classic DN model to
incorporate: interaction terms between center and
surround neurons, the activities of center neurons



(green in Fig. 1C), and the responses of surround
neurons (red in Fig. 1C). The addition of the inter-
action terms allowed the model to account for non-
separable variations in the structure of the neural re-
sponses shown in Fig. 2A. We use a realistic normal-
ization pool using the tuning properties of 475 MT
neurons [DeAngelis & Uka 2003], resulting in a net-
work with 226576 parameters (475 ws+ 475 w*’s +
475 X 475 w®’s + ). As observed in Fig. 2B, fitting
the weights of the classic DN model to match the ClI
predictions fail to account for the data (R? ranging
from 1% to 66%). This result occurs because the in-
dividual terms for the center and surround neurons
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can only account for horizontal or vertical stripes in
the 2D response profile. On the other hand, fitting
our extended DN model (Fig. 2C) better accounts (R?
between 87% and 98%) for the diagonal structures in
the responses by incorporating the center-surround
interaction terms. Importantly, the responses in Fig.
2C are generated using the same fitted weight pa-
rameters across all speed combinations, i.e., we do
not fit different weights to each speed combination.
In summary, our results suggest that an extended DN
model may serve as a mechanism used by the brain
to implement Cl computations.
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Figure 1. A: Stimulus with a moving object (green dots) along with a surrounding group (red dots); corresponding
velocities indicated below. B: Generative model motif describing how the brain infers whether the object moves with
the group or moves relative to it. C: Schematic of the extended normalization model with the corresponding equation

below.
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Figure 2. A: Cl predictions for a neuron evaluated at different center and surround speed combinations. Each panel

corresponds to a center (Vc) and surround (Vs) speed combination. B: Response of the classical DN model. C: Response
of our extended DN model.
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