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Abstract

Collecting new information about the outside world is a key
aspect of brain function. In the context of vision, we move our
eyes multiple times per second to accumulate evidence about
a scene. Prior studies have suggested that this process is goal-
directed and close to optimal. Here, we show that this process
of seeking new information suffers from a confirmation bias
similar to what has been observed in a wide range of other
contexts. We present data from a new gaze-contingent task
that allows us to both estimate a participant’s current belief,
and compare that to their subsequent eye-movements. We find
that these eye-movements are biased in a confirmatory way.
Finally, we show that these empirical results can be parsimo-
niously explained under the assumption that the brain performs
approximate, not exact, inference, with computations being
more approximate in decision-making compared to sensory ar-
eas.

Keywords: choice bias; perceptual decision-making; eye-
movements; approximate inference

Introduction

Human decision-making is often biased, and few biases are
as ubiquitous as the confirmation bias. Despite the fact that
it has been documented across a wide range of cognitive and
perceptual contexts, a unified understanding of its computa-
tional underpinning is currently missing (Nickerson, 1998;
Michel & Peters, 2020). Two major components contribute
to this bias: first, the biased seeking of information in sup-
porting one’s belief, and second, an interpretation of the ob-
served information that is biased by one’s existing beliefs.
Over the past 15 years, several studies have documented ev-
idence for a confirmation bias in perceptual decision-making
tasks which have the benefit of allowing for the collection
of large amounts of data using hundreds of repetitions from
the same participants, and to contrast human performance to
that of animals. The evidence from those studies has shed
much light on the biased interpretation of sensory evidence
(Nickerson, 1998; Michel & Peters, 2020; Lange, Chattoraj,
Beck, Yates, & Haefner, 2020). However, the seeking of
new sensory evidence, most notably by eye-movements, has
so far mostly been found to be close to optimal (Najemnik
& Geisler, 2005; Renninger, Verghese, & Coughlan, 2007;
Navalpakkam, Koch, Rangel, & Perona, 2010; Nelson & Cot-
trell, 2007; Toscani, Valsecchi, & Gegenfurtner, 2013; Yang,
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Lengyel, & Wolpert, 2016), but also see (Morvan & Maloney,
2012).

Our work makes two key contributions. First, it describes a
new psychophysical task that requires collecting sensory in-
formation by making saccades in the context of a classic two-
choice orientation discrimination task. We designed the task
to be able to measure as directly as possible how saccades
may be influenced by existing beliefs and found that the eye-
movements of 8/10 participants exhibited a confirmation bias.
Second, we show that this biased information-seeking behav-
ior can be explained by a computational model that starts with
an optimal Bayesian active sensing strategy (MacKay, 1992;
Yang et al., 2016) but assumes that the required computations
are implemented approximately via sampling. Importantly,
such a model requires computing two terms — a sensory and
a cognitive one — and it only displays the empirically ob-
served confirmation bias when the number of samples used
to compute the sensory term (and presumably implemented
in sensory areas) is larger than the number of samples used to
compute the cognitive term. Such a difference is compatible
with previous observations on the dramatic difference in in-
formation capacity comparing sensory periphery and central
processing, and suggestions that lower sensory areas act as
a “high-resolution buffer” for higher-level computations (Lee
& Mumford, 2003; Marois & Ivanoft, 2005).

Gaze contingent discrimination task
Rationale

Visual sensitivity to fine spatial structures differs greatly
across the visual field. As a result, humans use saccades (as
well as head and body movements) to move their eyes across
a scene in order to collect information. In order to determine
whether and, if so, how saccades are biased by previously col-
lected information we designed a two-choice orientation dis-
crimination task with a gaze-contingent stimulus display that
allows for close control over the information present both at
the current fixation point as well as in the periphery.

Task/Procedure

Participants were instructed to report the dominant (most fre-
quent) orientation on the screen encountered while moving
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Figure 1: (A) One example trial of the gaze contingent task. A saccade is indicated by red arrow. The category on the fixated
stimulus at any time ¢ is denoted by CO and the categories of the peripheral stimuli are denoted by C;' and Ctz. If the first saccade

is made to C/, then it becomes C?, |

for the next time step # + 1. Note that the black crosses are used for illustration purposes to

indicate possible locations of stimuli presentation. (B) Examples of stimulus used in the experiment.

their eyes across a screen(Fig. 1A). Each trial starts with fixa-
tion marker (white cross) in the center of a gray screen. After
holding fixation for 200ms, three oriented stimuli appeared
on the screen for a duration of 250ms (Fig. 1B, details be-
low): one stimulus around the fixation marker, plus two stim-
uli equidistant from fixation and each other. After 250ms, the
stimulus at the fixation point disappeared providing a cue to
the participant to make a saccade to one of the two stimuli in
the periphery. While the saccade was in progress, the non-
chosen peripheral stimulus disappeared and two new stimuli
appear, now peripheral with respect to the new fixation point.
After 250ms, the fixated stimulus disappears again and the
participant has to make another saccade to one of the two
peripheral stimuli. After a total of three saccades and four
fixations, the participant reports their belief about the cor-
rect stimulus category for the entire trial. The orientation of
each of the nine stimuli shown in each trial is drawn from the
correct orientation category with probability 0.7. This value
was chosen to encourage evidence accumulation. After each
choice, auditory feedback was provided to the participant on
whether their choice was correct. If a participant did not move
their eyes within 200ms of the fixation stimulus disappearing,
or if they did not report a choice within 2s after a trial ends,
then it was aborted and ignored in analysis.

Participants were trained to perform the task using one
block of 20 trials on the first day. Each following session
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consisted of blocks of 50 trials. Each of ten participants
completed between 111 and 569 trials (median 250) across
3 sessions. The large variance in trial number resulted from
the difficulty of the task, with a high fraction of aborted tri-
als due to blinks, premature or delayed saccades, or saccades
not landing at the center of one of the two peripheral stimuli.
Aborted trials were excluded online, during the experiment.

Stimulus

Each stimulus was constructed by band-pass filtering Gaus-
sian noise in the spatial frequency and orientation domains,
and masking it by a soft-edged annulus (Beaudot & Mullen,
2006; Nienborg & Cumming, 2014; Bondy, Haefner, & Cum-
ming, 2018; Lange et al., 2020) (Figure 1B). Each annu-
lus has a small white cross in the center which participants
are instructed to foveate as shown in Fig 1B. Each stimulus
subtends 2.08 degrees of visual angle around fixation. The
centers of each peripheral stimuli lie at 2.88 degrees from
each other and from the center of the fixated stimulus. The
mean spatial frequency of the stimuli is = 6.90 cycles per
degree, the spread of spatial frequency is = 3.45 cycles per
degree, the (inverse) spread of orientation energy is 0.8, the
image luminance = 127 £ 22 and the width of the central an-
nulus cutout is = 0.43°. Stimuli were generated using Mat-
lab and Psychtoolbox and presented on a gamma-corrected
1920x1080px 120 Hz monitor (Brainard, 1997). Participants



kept a constant viewing distance of 105 cm using a chin-rest.
Eye-movements were tracked using an Eyelink 1000.

Importantly, we chose the stimulus parameters and eccen-
tricities in order to make the orientation of a foveated stimulus
unambiguous for the participant, while providing some, but
not perfect, information about the orientation of the stimuli
in the periphery. If the information provided in the periphery
is too low, then the brain will not be able to use it to decide
where to move the eyes. If it is too high, then no new informa-
tion is gleaned from moving the eyes and saccade plans may
reflect different constraints than during natural viewing con-
ditions. Furthermore, the design of each stimulus minimizes
the effect of small fixational eye movements or variability in
fixation location (within the annulus) on the information pro-
vided to the visual system

Participants

The participants in this study consisted of 10 students at the
University of Rochester (8 naive, 2 authors — highlighted in
the analysis Figure 2A+B). Every naive participant was fi-
nancially compensated for their time. All experiments were
performed by following the guidelines and methods approved
by the UR Research participants Review Board.

Analysis

Our task design allowed us to measure whether and how a
participant combined their current belief about the correct
task category with the information they expected in the pe-
riphery when determining where to move their eyes next.
Hence we could further test whether a participant used their
current belief to make eye-movements towards confirmatory
stimulus in the periphery leading to confirmation bias or not.

Estimating a participant’s current belief within a trials:
We first performed logistic regression to determine the partic-
ipant’s choice bias as well as the weights assigned to the pre-
sented stimuli: 4 foveated stimuli and 5 non-foveated stimuli.
This allowed us to estimate a participant’s belief at the end of
each fixation period, on each trial, by multiplying the stimuli
presented so far with the corresponding weights and passing
them through the logistic function yielding log odds(Figure
2C).

Estimate saccade bias: During each fixation period within
a trial, the two peripheral stimuli were either of the same ori-
entation (58%), or of different orientations (42%). In order
to test for a confirmation bias in eye-movement strategy, we
analyzed on the latter category — where saccades could be
made either to a stimulus in agreement with our estimate of
the participant’s current belief, or disagreement (Figure 2B).

Findings

We found that participants could indeed successfully perform
this challenging task and were consistent in their performance
around threshold (Figure 2A). As expected, logistic weights
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on foveated stimuli (Figure 2C, black) are larger than those
on non-foveated ones (Figure 2C, magenta). This implies
that for most participants the peripheral stimuli in our task
contained some information that could in principle be used in
planning saccades to stimuli expected to either confirm or dis-
confirm one’s existing belief. Furthermore, despite substan-
tial participant-to-participant variability, most weights have a
weakly increasing trend on average, in line with prior find-
ings in comparable evidence accumulation tasks (Brunton,
Botvinick, & Brody, 2013; Wyart, De Gardelle, Scholl, &
Summerfield, 2012; Drugowitsch, Wyart, Devauchelle, &
Koechlin, 2016; Lange et al., 2020). This means that stim-
uli presented later in the trial have a slightly larger influence
on average on the participant’s choice than those presented
earlier.

Importantly, we found that 9/10 participants were more
likely to saccade to stimuli that agreed with their current
belief about the trial category (8/10 statistically significant).
One participant did not show any bias. It is possible that
they could not extract enough information from the periph-
eral stimuli to guide their saccades, hence making saccades
at random.

Approximate Bayesian active sensing model
Rationale

Maximal performance in our task is achieved by Bayesian ac-
tive sensing, i.e. an observer who maximizes the gain in infor-
mation about the correct choice with each saccade (MacKay,
1992; Najemnik & Geisler, 2005; Yang et al., 2016). How-
ever, it is straightforward to show that an exact Bayesian
observer does not display any saccade selection bias since
the gain in information is independent of stimulus orienta-
tion. However, what we will show below is that comput-
ing this gain in information approximately, in our case by
sampling, will indeed induce an observer bias that matches
our empirical data. The motivation for modeling the brain’s
approximate computations using sampling (as opposed to a
variational approximation) is based on extensive prior work
showing that sampling-based representations can account for
a large amount of both cognitive (Griffiths, Vul, & Sanborn,
2012; Gershman, Vul, & Tenenbaum, 2012; Sanborn, Grif-
fiths, & Navarro, 2010) and neural data (Fiser, Berkes, Orban,
& Lengyel, 2010; Berkes, Orban, Lengyel, & Fiser, 2011;
Haefner, Berkes, & Fiser, 2016; Orban, Berkes, Fiser, &
Lengyel, 2016; Echeveste, Aitchison, Hennequin, & Lengyel,
2020). However, it is possible that a variational approxima-
tion entails the same qualitative bias as a sampling-based ap-
proximation (Lange et al., 2020).

Model details

Figure 3A shows a simplified version of the generative model
for our task from the experimenter’s perspective. Each trial is
defined by a single category (45 degrees clockwise or coun-
terclockwise), C, and consists of 4 sequential 250ms displays,
indexed by # = 1..4, and represented by the plate (box) in Fig-
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ure 3A. For the first display, ¢+ = 1, the orientations for all
three presented stimuli are chosen independently from each
other to agree with C with probability 0.7: one at the fovea,
C?, and two in the periphery, C! and C?. The actually pre-
sented stimulus observed by the participant is then drawn as
a Gaussian around the respective orientation modeling both
the stochastic stimulus generation (orientation-filtered Gaus-
sian noise) and the sensory noise of the visual system. The
standard deviation of this Gaussian for the stimulus on the
fovea is Ofgvea, and the variance in the periphery is Gperipherys
where Gfovea < Operiphery- FOr subsequent displays, only the
two peripheral stimuli are drawn anew randomly to agree
with C with 0.7 probability. The foveated stimulus, on the
other hand, is identical to the peripheral stimulus saccaded
to between the previous and the current display. This depen-
dency between displays is not shown in Figure 3A for visual
simplicity, but incorporated in our model. Importantly, op-
timal Bayesian inference over trial category C in this model
requires optimally choosing saccade targets on each of the
first three displays. As has been previously shown, this is ac-
complished by maximize the Bayesian Active Sensing (BAS)
score across the two possible actions (MacKay, 1992; Najem-
nik & Geisler, 2005; Yang et al., 2016):

maxi—12 H[C|D] —Eco,) [H[CIC,D]] (D
N——

sensory component cognitive component

where D, = {I?_.t,lll”t,llz_.t} represents all the stimuli pre-
sented so far. Intuitively, the first term represents the partic-
ipant’s uncertainty about the peripheral stimulus under con-
sideration, and hence the information that could in principle
be gleaned from saccading there. The 2nd component sub-
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tracts from that the information about this location that is al-
ready known given one’s current belief about the trial cate-
gory C. We call them ’sensory component’ and ’cognitive
component’ since they are likely computed in a sensory and
cognitive area, respectively.

In this work we hypothesize that the brain cannot compute
this score exactly, but approximates it by sampling. We ob-
tain:

H I:Ctl‘@t] o 1 Z'fcognitive H [Czi|c(j)7 @t]

Neognitive “J= 1

Q

1 Nsensory .
~ L) —»(G=cCyln)
Nsensory "¢ j—|
Nsensory

x log

Y p(C=cCuln)

Nsensory p1—y

1 Ncognitive

=Y r (G =clcu, D)

Neognitive  j—| P

x logp (C/ = c|Cyy,Dy)]

where ngensory and neognitive are the number of samples used
to approximate each computation. In general, these two
numbers, Agensory aNd 7cognitive, May potentially be different
in the brain, reflecting differences in computational power
and/speed in sensory and cognitive areas. It turns out that
for ngensory > Ncognitive the model exhibits a confirmation bias
as described below.

Findings
We analyzed the behavior of our model and compared it
to our empirical results. The three key parameters in our
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observed performance and bias for two example subjects are shown as solid iso-contour lines with dashed lines indicating 68%
errorbars (upper errorbar for subject 1 and lower errorbar extend outside the range of values shown in the figure)

model are the numbers of samples used for both compo-
nents, and the amount of sensory uncertainty in the periph-
€ry, Operiphery- TLirst, we found as expected that close-to-
exact inference (large number of samples for both compo-
nents) induced no bias in saccade choice regardless of any
other parameters. Next, based on numerical simulations, we
found the same result when ngensory = cognitive- HoOwever,
when 7gensory > Ncognitive WE found a bias for confirmatory
saccades, while for ngensory < cognitive W€ found the oppo-
site bias: to peripheral stimuli that disagreed with the par-
ticipant’s (model’s) current belief. Since none of our partic-

2438

ipant showed the latter bias, we next focused on the case of
Nsensory = Meognitive DY TiXING Asensory = 100 (close to exact)
while independently varying ncognitive and Gperiphery- The Te-
sults on accuracy and saccade bias are shown in Figure 3.
We found that for our discrimination task the performance
depended almost exclusively on the sensory uncertainty, and
only very weakly on the degree of the approximation used to
compute the BAS score. On the other hand, as long as the sen-
sory noise in the periphery was not too large, the strength of
the bias depended primarily on the degree of approximation
of the cognitive computation as quantified by ncognitive: the



coarser the approximation the larger the bias. Furthermore,
the bias ranged from 0.5 to about 0.8 for the case n¢ognitive = 1,
covering the range of empirically observed values. The em-
pirically observed performance and bias correspond to iso-
contour lines (shown for two participants as solid lines) in
the 2D parameter space shown in Figure 3C and 3D respec-
tively. Three simulated ’participants’ (models) are shown as
red, green, and blue dots in Figure 3B. When the sensory
noise in the periphery was too large, the bias disappeared due
to the fact that regardless of approximation, the model could
not infer any information to influence its saccades.

Discussion

Our work makes three contributions. First, we present a new
task design that allows for the study of perceptual decision-
making across multiple goal-directed eye-movements in a
highly-controlled context. Second, we provide evidence that
observers’ eye-movements are biased by their current beliefs
when sampling new information to make perceptual judge-
ments. Third, we showed that the empirically observed con-
firmation bias can be explained as the consequence of approx-
imate computations in an ideal observer model (Yang et al.,
2016).

Our gaze-contingent task was designed with the goal to
tightly control the information available for both making
choices in the task, and for making eye-movements to poten-
tial peripheral targets. It is therefore highly artificial, allow-
ing for simple behavioral analyses (Rust & Movshon, 2005).
It will therefore be important to verify the validity of our
findings in ecologically relevant contexts by allowing for less
constrained environments in non-gaze-contingent displays.

While the empirical effect that we report is very robust with
an individually significant bias in 8/10 observers, the subject-
to-subject variability is worth investigating in more detail.
One short-coming of our current experiment is that the sig-
nal strength — eccentricity combination for the targets in the
periphery is not adjusted to the peripheral sensory uncertainty
for each individual observer. As a result, there may be sub-
stantial subject-to-subject variability in the uncertainty about
the orientation of the peripheral targets. If the uncertainty
is too large, eye movements will necessarily be unbiased as
might be the case for observer 5 in our dataset. However, we
did not find a significant correlation between the magnitude
of the saccade bias and the regression weights for the stimuli
that were never foveated. Note, however, that those weights
are the result of both sensory inference and decision-making
and therefore can only be expected to be indirectly related to
peripheral uncertainty.

We modeled the observed biases as an ideal observer who
chooses stimuli in the periphery that maximize the observer’s
information about the correct trial category — formalized as
maximizing the mutual information between the peripheral
stimulus orientation and the trial category. The mutual infor-
mation can be expressed as a difference between two com-
ponents: (a) the “raw” peripheral stimulus information (the
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sensory component) and (b) the expected peripheral stimulus
information based on the current belief about the correct trial
category (cognitive component). We hypothesize that partic-
ipants approximate the underlying computations by sampling
to compute each of the two components. A sampling-based
representation has been previously proposed for modeling be-
havior (Gershman et al., 2012; Griffiths et al., 2012) and neu-
ral responses (Fiser et al., 2010; Haefner et al., 2016; Orban
et al., 2016). Simulating this approximate information maxi-
mization model we found that a coarser approximation of the
cognitive component than the sensory component led to a bias
towards confirmatory saccades. On the other hand, we also
found that a coarser approximation of the sensory than the
cognitive component results in saccades to targets that are ex-
pected to disagree with the observer’s current belief. Despite
the model’s ability to predict both types of biases in saccade
selection we observed most participants having confirmatory
saccades. We suggest that this is the result of the brain having
a better representation of the sensory component compatible
with prior proposals of higher capacity representations early
in the visual hierarchy (Lee & Mumford, 2003).

The two key parameters in our model that determine its be-
havior — both with respect to choice accuracy, and strength
of confirmation bias — are the difference (ratio) in number of
samples used to evaluate the ’sensory’ compared to ’cogni-
tive’ component of the Bayesian active sensing score, and the
uncertainty of the stimulus in the periphery compared to that
in the fovea. While visually comparing individual observers
to model predictions (Figure 3C+D) suggests that the model
is compatible with the data, and that the number of cogni-
tive samples is very small, quantitative model fitting will be
required to draw more reliable conclusions.

Eye movements are crucial for collecting information
about the world. Our insights into how they are biased, and
how approximate computations may be responsible for this
bias, are not only important for our understanding of human
vision but may also yield insights into potential biases and
their causes in cognition and machine learning.
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