Intro to categorical data analysis in R

Anova over proportion vs. ordinary and mixed logit models

T. Florian Jaeger (tiflo@bcs.rochester.edu)
Brain & Cognitive Sciences, University of Rochester

- ▲ Recap of ANOVA's assumption
- ▲ Example for ANOVA over proportions
- **▲**Example for Logistic Regression
- ▲ Example for Mixed Logit Model

[▲]Assumes:

- Normality of dependent variable within levels of factors
- Linearity
- (Homogeneity of variances)
- Independence of observations → leads to F1, F2

▲ Designed for balanced data

 Balanced data comes from balanced designs, which has other desirable properties

- ANOVA can be seen as a special case of linear regression
- Linear regression makes more or less the same assumptions, but does not require balanced data sets
 - Deviation from balance brings the danger of collinearity (different factors explaining the same part of the variation in the dep.var.) → inflated standard errors → spurious results
 - But, as long as collinearity is tested for and avoided, linear regression can deal with unbalanced data

- ▲Unbalanced data sets are common in corpus work and less constrained experimental designs
- ▲Generally, more naturalistic tasks result in unbalanced data sets (or high data loss)

- ANOVA designs are usually restricted to categorical independent variables → binning of continuous variables (e.g. high vs. low frequency) →
 - Loss of power (Baayen, 2004)
 - Loss of understanding of the effect (is it linear, is it log-linear, is it quadratic?):

 E.g. speech rate has a quadratic effect on phonetic reduction; dual-route mechanisms lead to non-linearity

- ARegressions (Linear Models, Generalized Linear Models) are well-suited for the inclusion of *continuous predictors*
- AR comes with tools to test linearity (e.g. rcs(), pol() in Design library)

▲Example: effect of CC-length on *that*-mentioning:

He really believes (that) <u>be's</u> not drunk.

- Another shortcoming of ANOVA is that it is limited to continuous outcomes
- △Often ignored as a minor problem → ANOVAs performed over percentages (derived by averaging over subjects/items)

Proportion ← Categorical variable (e.g. either 0 or 1)

```
i.F1<- aggregate(i[,c('CorrectResponses')],
  by= list(subj= ..., condition= ...),
  FUN= mean)

F1<- aov(CorrectResponses ~ condition +
        Error(subj/(condition)), i.F1)</pre>
```


- ▲ Doesn't scale to categorical dependent variables with multiple outcomes (e.g. multiple choice answers; priming: no prime vs. prime structure A vs. prime structure B)
- Violates assumption of homogeneity of variances
 - Leads to spurious results, because percentages are not the right space
- ▲ Logistic regression, a type of Generalized Linear Model (a generalization over linear regressions), addresses these problems

- ▲ Intuitively, why aren't percentages the right space?
 - Can lead to **un-interpretable results**: below or above 0 ... 100% (b/c Cls lie outside [0,1])
 - Simple question: how could a 10% effect occur if the baseline is already 95%?
- △Change in percentage around 50% is less of a change than change close to 0 or 100%
 - E.g., going from 50 to 60% correct answers is only **20**% **error reduction**, but going from 85 to 95% is a **67**% **error reduction**
- →effects close to 0 or 100% are underestimated, those close to 50% are overestimated

 ANOVA over proportions of violate the assumption of homogeneity of variances

▲ In what space can we avoid these problems?

$$\rightarrow$$
 odds = p / $(1 - p)$ from $[0; \infty]$;

Multiplicative scale but regressions are based on sums

 \rightarrow Logit: log-odds = log(p / (1 - p)) from [- ∞ ; + ∞] centered around 0 (= 50%)

Logistic regression: linear regression in log-odds space

▲ Common alternative, ANOVA-based solution: arcsine transformation, BUT ...

- ★ Why arcsine at all?
- ▲ Centered around 50% with increasing slope towards 0 and 100%
- ▲ Defined for O and 100% (unlike logit)

Comparing transformations of probabilities

▲ For all probabilities (proportions) the logit has a higher slope and a higher absolute curvature.

An example: Child relative clause comprehension in Hebrew

(Thanks to Inbal Arnon)

▲ Taken from **Inbal Arnon**'s study on child processing of Hebrew relative clauses:

Arnon, I. (2006). *Re-thinking child difficulty: The effect of NP type on child processing of relative clauses in Hebrew.*Poster presented at The 9th Annual CUNY Conference on Human Sentence Processing, CUNY, March 2006

Arnon, I. (2006). Child difficulty reflects processing cost: the effect of NP type on child processing of relative clauses in Hebrew. Talk presented at the 12th Annual Conference on Architectures and Mechanisms for Language Processing, Nijmegen, Sept 2006.

- ▲ Design of comprehension study: 2 x 2
 - Extraction (Object vs. Subject)
 - NP type (lexical NP vs. pronoun)
 - Dep. variable: Answer to comprehension question

- (1) tasimi madbeka al ha-safta she menasheket et ha-yalda.

 Put sticker on the-granny that kisses the girl'

 'Put a sticker on the granny that kisses the girl'
- (2) tasimi madbeka al ha-safta she ha-yalda menasheket.

 Put sticker on the-granny that the-girl kisses

 'Put a sticker on the granny that the girl kisses'


```
# load data frame
i <-data.frame(read.delim("C:\\Documents and
    Settings\\florian\\Desktop\\R tutorial\\inbal.tab"))
# the data.frame contains data from production and
# comprehension studies. We select comprehension data
    only
# also let's select only cases that have values for all
# variables for interest
i.compr <- subset(i, modality == 1 & Correct != "#NULL!"
    & !is.na(Extraction) & !is.na(NPType))</pre>
```



```
# defining some variable values
# we recode (and rename) the two independent variables
 to:
# RCtype :: either "subject RC" or "object RC"
# NPtype :: either "lexical" or "pronoun"
i.compr$RCtype<- as.factor(ifelse(i.compr$Extraction ==
 1, "subject RC", "object RC"))
i.compr$NPtype <- as.factor(ifelse(i.compr$NPType == 1,
  "lexical", "pronoun"))
# in order to average over the categorical dependent
 variable
# we convert it into a number (0 or 1)
i.anova$Correct <-</pre>
 as.numeric(as.character(i.anova$Correct))
```


Correct answers	Lexical NP		Pronoun Ni	
Object RC	+20.7%	68.9% +15.	4%10.4%	84.3% →
Subject RC		89.6% +6.1		95.7%


```
# aggregate over subjects
i.F1 <- aggregate(i.anova,
  by= list(subj= i.anova$child, RCtype= i.anova$RCtype,
  NPtype= i.anova$NPtype),
  FUN= mean)
F1 <- aov(Correct ~ RCtype * NPtype + Error(subj/(RCtype * NPtype)), i.F1)
summary(F1)</pre>
```

 \triangle **RC** type: F1[1,23]= 30.3, p< 0.0001

NP type: F1(1,23)= 20.6, p< 0.0002

 \triangle RC type x NP type: F1(1, 23)= 8.1, p< 0.01


```
# apply arcsine transformation on aggregated data
# note that arcsine is defined from [-1 ... 1], not [0 ... 1]
i.F1$TCorrect <- asin(sqrt(i.F1$Correct))

F1 <- aov(TCorrect ~ RCtype * NPtype + Error(subj/(RCtype * NPtype)), i.F1)
summary(F1)</pre>
```

- \triangle **RC** type: F1(1,23)= 34.3, p< 0.0001
- **NP** type: F1(1,23)= 19.3, p< 0.0003
- \triangle RC type x NP type: F1(1, 23)= 4.1, p< 0.054


```
# apply logit transformation on aggregated data
# use * 0.9999 to avoid problems with 100% cases
i.F1$TCorrect <- qlogis((i.F1$Correct - 0.5) * 0.9999) + .5

F1 <- aov(TCorrect ~ RCtype * NPtype + Error(subj/(RCtype * RCtype)), i.F1)
summary(F1)</pre>
```


$$\triangle$$
 RC type x NP type: F1(1, 23)= 0.8, p> 0.37

▲The significance of the test using the "quasi"-logit transformation depends a lot on how much we "shrink" proportions before applying the logit:

The quasi-logit transformation


```
step<- 100
s<- .8
e < -.999999
# rerun anova analysis with different "shrinkage"
for (t in seq(s,e,(e-s) / step)) \{
       i.F1$TCorrect <- qlogis(((i.F1$Correct -.5) * t) + .5)</pre>
       F1 <- aov(TCorrect ~ Extraction * NPType +
              Error(subj/(Extraction * NPType)), i.F1)
       # extracting p-value for interaction
       if(t == s) {
          p<- c(as.numeric(</pre>
              unlist(
                summary(F1)[4][[1]][[1]]["Pr(>F)"])[1]))
       else {
          p<- append(p, c(as.numeric())</pre>
              unlist(
                 summary(F1)[4][[1]][[1]]["Pr(>F)"])[1]))) }
plot(seq(s,e,(e-s)/step),p,
       xlab="Shrinkage factor",
       ylab="P-value for example data set",
       type="b", main="The quasi-logit transformation")
abline(0.05, 0, col=2, lty=2)
```


Comparing transformations of probabilities

- ▲ For the current sample, ANOVAs over our quasi-logit transformation seems to do the job
- ▲But logistic regressions (or more generally, Generalized Linear Models) offer an alternative
 - more power (Baayen, 2004)
 - easier to add post-hoc controls, covariates
 - easier to extend to unbalanced data
 - nice implementations are available for R, SPSS, ...

Logistic regression


```
# no aggregating
```

```
library(Design)
```

i.d <- datadist(i.compr[,c('Correct', 'RCtype', 'NPtype')])
options(datadist='i.d')</pre>

i.l <- lrm(Correct ~ RCtype * NPtype, data = i.compr)

Children are 3.9 times better at answering questions about **subject RCs**

Children are 2.4 times better at answering questions about **RCs with pronoun** subjects

Factor	Coeffi	cien	t	SE	Wald	Р
	(in log	-bdd:	5)			
Intercept		\O.	30	0.167	4.72	<0.0001
RC type=subject RC		1.0	35	0.295	4.58	<0.0001
NP type=pronoun		0.8	39	0.272	3.26	<0.001
RC type * NP type		0.0)5	0.511	0.10	>0.9


```
par(mar=c(1,1,3,1), cex.lab=1.5, cex=1.2)
plot(summary(i.l), nbar=10)
```


ted to:RCtype=subject RC NPtype=pronoun

par(mar=c(1,1,3,1), cex.lab=1.5, cex=1.2)
plot(summary(i.l), nbar=10)

plot(i.1, RCtype=NA, NPtype=NA,
 ylab="Log-odds of correct answer")

Factor	Coefficient	SE	Wald	P
	(in log-odds)			
Intercept	1.70	0.200	8.51	<0.0001
RC type=subject RC	1.36	0.257	5.37	<0.0001
NP type=pronoun	0.92	0.263	3.49	<0.001
Centered interaction	0.05	0.513	0.10	>0.9

▲Full model: Nagelkerke r²=0.12

▲ Likelihood ratio test more robust against collinearity

- Arnon realized post-hoc that a good deal of her stimuli head nouns and RC NPs that were matched in animacy.
- △Such animacy-matches can lead to interference

- (1) tasimi madbeka al ha-safta she menasheket et ha-yalda.

 Put sticker on the-granny that kisses the girl'

 Put a sticker on the granny that kisses the girl'
- (2) tasimi madbeka al ha-safta she ha-yalda menasheket. Put sticker on the-granny that the-girl kisses 'Put a sticker on the granny that the girl kisses'

	Match	No Match
S.Lexical	91	91
S.Pronoun	92	92
O.Lexical	95	69
O.pronoun	94	72

- ▲In logistic regression, we can just add the variable
- ▲ Matched animacy is almost balanced across conditions, but for more unbalanced data, ANOVA would become inadequate!
- Also, while we're at it does the children's age matter?

i.lc <- lrm(Correct ~ Extraction * NPType + Animacy +
 Age, data = i.compr)</pre>

fastbw(i.lc)

fast backward variable removal

Coefficients of Extraction and NP type almost unchanged → good, suggests independence from newly added factor

Lack of animacy-based interference does indeed increase performance, but the other effects persist

Possibly small increase in performance for older children (no interaction found)

	O (C.)			Terr (Tre irreer decient rearra)		
	Coefficie (in log-qo		SE	E	Wald	P
Intercept	-	1.OE	3	0.956	-1.10	>0.25
RC type=subject		1.45	3	0.300	4.78	<0.0001
NP type=pronoun		D.91	1	0.275	3.33	<0.001
Animacy=no match	().6 [∠]	1	0.226	2.84	<0.005
Age		0.03	3	0.018	1.60	<0.11

 \triangle Model $r^2 = 0.151 \rightarrow$ quite an improvement

- As we are leaving balanced designs in post-hoc tests like the ones just presented, collinearity becomes an issue
- ▲ Collinearity (a and b explain the same part of the variation in the dependent variable) can lead to spurious results

▲In this case all VIFs are below 2 (VIFs of 10 means that no absence of total collinearity can be claimed)

```
# Variation Inflation Factor (Design library)
vif(i.lc)
```


- ▲ The assumption of independence is violated if clusters in your data are correlated
 - Several trials by the same subject
 - Several trials of the same item

Subject/item usually treated as random effects

- Levels are not of interest to design
- Levels represent random sample of population
- Levels grow with growing sample size
- Account for variation in the model (can interact with fixed effects!), e.g. subjects may differ in performance

- ▲In ANOVAs, F1 and F2 analyses are used to account for random subject and item effects
- ▲ There are several ways that subject and item effects can be accounted for in Generalized Linear Models (GLMs)
 - Run models for each subject/item and examine distributions over coefficients (Lorch & Myers, 1990)
 - Bootstrap with random cluster replacement
 - Incorporate random effects into model → Generalized Linear Mixed Models (GLMMs)

- ARandom effects are sampled from normal distribution (with mean of zero)
 - Only free parameter of a random effect is the standard deviation of the normal distribution


```
library(lme4)
```

```
i.ml <- lmer(Correct ~ RCtype * NPtype + (1 + RCtype *
   NPtype | child), data = i.compr, family="binomial")
summary(i.ml)</pre>
```

Factor	Coefficient	SE	Wald	P
	(in log-odds)			
Intercept	0.84	0.203	4.12	<0.0001
RC type=subject	1.82	0.368	4.95	<0.0001
NP type=pronoun	1.07	0.289	3.70	<0.0003
RC type * NP type	0.59	0.581	1.02	>0.3

- ▲Using an ANOVA over percentages of categorical outcomes can lead to spurious significance
- ↓ Using the 'standard' arcsine transformation did not prevent this problem
- ≜Our ANOVA over 'adapted' logit-transformed percentages did ameliorate the problem
- Moving to regression analyses has the advantage that imbalance is less of a problem, and extra covariates can easily be added

- Logistic regression provides an alternative way to analyze the data:
 - Gets the right results
 - Coefficients give direction and size of effect
 - Differences in data log-likelihood associated with removal of a factor give a measure of the importance of the factor
- Logit Mixed models provide a way to combine the advantages of logistic regression with necessity of random effects for subject/item
 - subject/item analyses can be done in one model


```
l <- lmer(FinalScore ~
    PrimeStrength * log(TargetOdds) +
    Lag +
    PrimingStyle +
    (1 | SuperSubject) +
    (1 | SuperItem),
    data = k,
    family = "binomial")

summary(i.ml)</pre>
```


- ▲Intro to R by Matthew Keller
 http://matthewckeller.com/html/r_course.html [thanks to Bob Slevc for pointing this out to me]
- Intro to Statistic using R by Shravan Vasishth
 http://www.ling.uni-potsdam.de/~vasishth/Papers/vasishthESSLLIO5.pdf; see also the other slides on his website
- ▲Joan Bresnan taught a Laboratory Syntax class in Fall, 2006 on using R for corpus data; ask her for her notes one bootstrapping and mixed models
- ▲Peter Dalgaard. 2002. *Introductory Statistics to R.* Springer, http://staff.pubhealth.ku.dk/~pd/lSwR.html

- A Harald Baayen. 2004. Statistics in Psycholinguistics: A critique of some current gold standards. In Mental Lexicon Working Papers 1, Edmonton, 1-45; http://www.mpi.nl/world/persons/private/baayen/publications/Statistics.pdf
- ▲ J.C. Pinheiro & Douglas M. Bates. 2000. *Mixed effect models in S and S-plus*. Springer, http://stat.bell-labs.com/NLME/MEMSS/index.html [S and S+ are commercial variants of R]
- △ Douglas M. Bates & Saikat DebRoy. 2004. *Linear mixed models and penalized least squares*. Journal of Multivariate Analysis 91, 1–17
- A Hugo Quene & Huub van den Bergh. 2004. *On multi-level modeling of data from repeated measures designs: a tutorial.* Speech Communication 43, 103–121