Intro to categorical data analysis in R

Anova over proportion vs. ordinary and mixed logit models
T. Florian Jaeger [tiflo@bcs.rochester.edu)

Brain \& Cognitive Sciences, University of Rochester

ARecap of ANOVA's assumption

A Example for ANOVA over proportions

AExample for Logistic Regression

AExample for Mixed Logit Model

A Assumes:

- Normality of dependent variable within levels of factors
- Linearity
- [Homogeneity of variances]
- Independence of observations \rightarrow leads to F1, F2

A Designed for balanced data

- Balanced data comes from balanced designs, which has other desirable properties

4ANOVA can be seen as a special case of linear regression

A Linear regression makes more or less the same assumptions, but does not require balanced data sets

- Deviation from balance brings the danger of collinearity [different factors explaining the same part of the variation in the dep.var.] \rightarrow inflated standard errors \rightarrow spurious results
- But, as long as collinearity is tested for and avoided, linear regression can deal with unbalanced data
a Unbalanced data sets are common in corpus work and less constrained experimental designs

A Generally, more naturalistic tasks result in unbalanced data sets [or high data loss]

\& ANOVA designs are usually restricted to categorical

 independent variables \rightarrow binning of continuous variables [e.g. high vs. low frequency] \rightarrow- Loss of power [Baayen, 2004]
- Loss of understanding of the effect [is it linear, is it log-linear, is it quadratic?):
predicted: effect
predicted: no effect
- E.g. speech rate has a quadratic effect on phonetic reduction; dual-route mechanisms lead to non-linearity

ARegressions [Linear Models, Generalized Linear Models] are well-suited for the inclusion of continuous predictors
a R comes with tools to test linearity [e.g. rcs(), pol() in Design library]

A Example: effect of CClength on that-mentioning:

He really believes (that) be's not drunk.

A Another shortcoming of ANOVA is that it is limited to continuous outcomes

A Often ignored as a minor problem \rightarrow ANOVAs performed over percentages [derived by averaging over subjects/items]

```
            Proportion < Categorical variable [e.g. either O or 1)
i.F1<- aggregate(i[,c('CorrectResponses')],
by= list(subj= ..., condition= ...),
FUN= mean)
```

F1<- aov(CorrectResponses ~ condition +
Error(subj/(condition)), i.F1)
a Doesn't scale to categorical dependent variables with multiple outcomes [e.g. multiple choice answers; priming: no prime vs. prime structure A vs. prime structure B]
^ Violates assumption of homogeneity of variances

- Leads to spurious results, because percentages are not the right space

A Logistic regression, a type of Generalized Linear Model [a generalization over linear regressions], addresses these problems
\& Intuitively, why aren't percentages the right space?

- Can lead to un-interpretable results: below or above 0 ... 100% [b/c Cls lie outside [0,1]]
- Simple question: how could a 10\% effect occur if the baseline is already 95\%?

A Change in percentage around 50% is less of a change than change close to 0 or 100\%

- E.g., going from 50 to 60% correct answers is only 20\% error reduction, but going from 85 to 95% is a $\mathbf{6 7 \%}$ error reduction
\rightarrow effects close to 0 or 100\% are underestimated, those close to 50\% are overestimated

AMore formally,

- ANOVA over proportions of violate the assumption of homogeneity of variances

A In what space can we avoid these problems?

$$
\rightarrow \text { odds = p / [1 - p] from [0; } \infty \text {]; }
$$

Multiplicative scale but regressions are based on sums
\rightarrow Logit: log-odds $=\log [\mathrm{p} /[1-\mathrm{p}]]$ from $[-\infty ;+\infty]$ centered around O [= 50\%]

Logistic regression: linear regression in log-odds space

ACommon alternative, ANOVA-based solution: arcsine transformation, BUT ...

A Why arcsine at all?

A Centered around 50\% with increasing slope towards 0 and 100\%

A Defined for 0 and 100\% [unlike logit)

Comparing transformations of probabilities

A For all probabilities [proportions) the logit has a higher slope and a higher absolute curvature.

An example: Child relative clause comprehension in Hebrew
 [Thanks to Inbal Apnon]

ATaken from Inbal Arnon's study on child processing of Hebrew relative clauses:

Arnon, I. [2006]. Re-thinking child difficulty: The effect of NP type on child processing of relative clauses in Hebrew. Poster presented at The 9th Annual CUNY Conference on Human Sentence Processing, CUNY, March 2006

Arnon, I. [2006]. Child difficulty reflects processing cost: the effect of NP type on child processing of relative clauses in Hebrew. Talk presented at the 12th Annual Conference on Architectures and Mechanisms for Language Processing, Nijmegen, Sept 2006.

ADesign of comprehension study: 2×2

- Extraction [Object vs. Subject]
- NP type [lexical NP vs. pronoun)
- Dep. variable: Answer to comprehension question
(1) tasimi madbeka al ha-safta she menasheket et ha-yalda. Put sticker on the-granny that kisses the-girlACC
'Put a sticker on the granny that kisses the girl'
(2) tasimi madbeka al ha-safta she ha-yalda menasheket. Put sticker on the-granny that the-girl kisses 'Put a sticker on the granny that the girl kisses'

```
# load data frame
i <-data.frame(read.delim("C:\\Documents and
    Settings\\florian\\Desktop\\R tutorial\\inbal.tab"))
# the data.frame contains data from production and
# comprehension studies. We select comprehension data
    only
# also let's select only cases that have values for all
# variables for interest
i.compr <- subset(i, modality == 1 & Correct != "#NULL!"
    & !is.na(Extraction) & !is.na(NPType))
```

```
# defining some variable values
# we recode (and rename) the two independent variables
    to:
# RCtype :: either "subject RC" or "object RC"
# NPtype :: either "lexical" or "pronoun"
i.compr$RCtype<- as.factor(ifelse(i.compr$Extraction ==
    1, "subject RC", "object RC"))
i.compr$NPtype <- as.factor(ifelse(i.compr$NPType == 1,
    "lexical", "pronoun"))
# in order to average over the categorical dependent
    variable
# we convert it into a number (0 or 1)
i.anova$Correct <-
    as.numeric(as.character(i.anova$Correct))
```



```
# aggregate over subjects
i.F1 <- aggregate(i.anova,
        by= list(subj= i.anova$child, RCtype= i.anova$RCtype,
        NPtype= i.anova$NPtype),
        FUN= mean)
F1 <- aov(Correct ~ RCtype * NPtype + Error(subj/(RCtype *
    NPtype)), i.F1)
summary(F1)
```

4RC type: F1[1,23)=30.3, p< 0.0001
4 NP type: F1 1,23)= 20.6, p<0.0002
^RC type x NP type: F1 $[1,23]=8.1, p<0.01$

```
# apply arcsine transformation on aggregated data
# note that arcsine is defined from [-1 ... 1], not [0 ... 1]
i.F1$TCorrect <- asin(sqrt(i.F1$Correct))
F1 <- aov(TCorrect ~ RCtype * NPtype + Error(subj/(RCtype *
    NPtype)), i.F1)
summary(F1)
```

ARC type: F1 $(1,23)=34.3, p<0.0001$ ^NP type: F1 11,23)= 19.3, p< 0.0003 А RC type x NP type: F1(1, 23)= 4.1, p<0.054

```
# apply logit transformation on aggregated data
# use * 0.9999 to avoid problems with 100% cases
i.F1$TCorrect <- qlogis((i.F1$Correct - 0.5) * 0.9999) + .5
F1 <- aov(TCorrect ~ RCtype * NPtype + Error(subj/(RCtype *
    RCtype)), i.F1)
summary(F1)
```

^RC type: F1[1,23)= 29.0, p< 0.0001
^NP type: F1 $(1,23)=13.5, p<0.002$
ARC type x NP type: F1 (1, 23) $=0.8, p>0.37$

A The significance of the test using the "quasi"-logit transformation depends a lot on how much we "shrink" proportions before applying the logit:


```
step<- 100
s<- . }
e<- . }99999
# rerun anova analysis with different "shrinkage"
for (t in seq(s,e,(e-s) / step)) {
    i.F1$TCorrect <- qlogis(((i.F1$Correct -.5) * t) + .5)
    F1 <- aov(TCorrect ~ Extraction * NPType +
    Error(subj/(Extraction * NPType)), i.F1)
    # extracting p-value for interaction
    if(t == s) {
        p<- c(as.numeric(
                        unlist(
                        summary(F1)[4][[1]][[1]]["Pr(>F)"])[1]))
    }
    else {
        p<- append(p, c(as.numeric(
                        unlist(
                        summary(F1)[4][[1]][[1]]["Pr(>F)"])[1]))) }
}
plot(seq(s,e,(e-s)/step),p,
    xlab="Shrinkage factor",
    ylab="P-value for example data set",
    type="b", main="The quasi-logit transformation")
abline(0.05,0, col=2, lty=2)
```


Comparing transformations of probabilities

AFor the current sample, ANOVAs over our quasi-logit transformation seems to do the job

ABut logistic regressions [or more generally, Generalized Linear Models] offer an alternative

- more power [Baayen, 2004]
- easier to add post-hoc controls, covariates
- easier to extend to unbalanced data
- nice implementations are available for R, SPSS, ...

Logistic regression

```
# no aggregating
library(Design)
i.d <- datadist(i.compr[,c('Correct','RCtype','NPtype')])
options(datadist='i.d')
i.l <- lrm(Correct ~ RCtype * NPtype, data = i.compr)
```

Children are 3.9 times better
at answering questions about
subject RCs

Children are 2.4 times better at answering questions about RCs with pronoun subjects

Factor	Coefficient [in log-odds]	SE	Wald	P
Intercept	0.80	0.167	$4.72<0.0001$	
RC type=subject RC	1.35	0.295	$4.58<0.0001$	
NP type=pronoun	0.89	0.272	$3.26<0.001$	
RC type * NP type	0.05	0.511	$0.10>0.9$	

```
par(mar=c(1,1,3,1), cex.lab=1.5, cex=1.2)
plot(summary(i.l), nbar=10)
```


ted to:RCtype=subject RC NPtype=pronoun
$\operatorname{par}(\operatorname{mar}=c(1,1,3,1), ~ c e x . l a b=1.5, ~ c e x=1.2)$
plot(summary(i.l), nbar=10)

plot(i.l, RCtype=NA, NPtype=NA, ylab="Log-odds of correct answer")


```
# nRCtype and nNPtype are numerically coded
# creating centered interaction variable
i.compr$nInt <- (i.compr$nRCtype - mean(i.compr$nRCtype)) *
    (i.compr$nNPtype - mean(i.compr$nNPtype))
# rerun logistic regression with new terms
i.int.l <- lrm(Correct ~ nRCtype + nNPtype + nInt, i.compr)
i.int.l
# Variance Inflation Factors of new model are lower }->\mathrm{ nice
vif(i.int.l)
```

Factor	Coefficient (in log-odds]	SE	Wald	P
Intercept	1.70	0.200	8.51	<0.0001
RC type=subject RC	1.36	0.257	5.37	<0.0001
NP type=pronoun	0.92	0.263	3.49	<0.001
Centered interaction	0.05	0.513	$0.10>0.9$	

AFull model: Nagelkerke $r^{2}=0.12$

A Likelihood ratio test more robust against collinearity

^Arnon realized post-hoc that a good deal of her stimuli head nouns and RC NPs that were matched in animacy.

ASuch animacy-matches can lead to interference
(1) tasimi madbeka al ha-safta she menasheket et ha-yalda. Put sticker on the-granny that kisses the-girlACC
'Put a sticker on the granny that kisses the girl'
(2) tasimi madbeka al ha-safta she ha-yalda menasheket. Put sticker on the-granny that the-girl kisses
'Put a sticker on the granny that the girl kisses'

A In logistic regression, we can just add the variable

A Matched animacy is almost balanced across conditions, but for more unbalanced data, ANOVA would become inadequate!
^Also, while we're at it does the children's age matter?
i. lc <- lrm(Correct \sim Extraction * NPType + Animacy + Age, data = i.compr)
fastbw(i.lc) \# fast backward variable removal
Coefficients of Extraction and NP
type almost unchanged \rightarrow good,
suggests independence from
newly added factor

Lack of animacy-based interference does indeed increase performance, but the other effects persist

Possibly small increase in performance for older children [no interaction found)

Factor	Coefficient (in log-odds)	SE	Wald	P
Intercept	-1.06	6 0.956	-1.10	>0.25
RC type=subject	1.43	0.300	4.78	<0.0001
NP type=pronoun	0.91	0.275	3.33	<0.001
Animacy=no match	0.64	0.226	2.84	<0.005
Age	0.03	0.018	1.60	<0.11

s Model $r^{2}=0.151 \rightarrow$ quite an improvement

A As we are leaving balanced designs in post-hoc tests like the ones just presented, collinearity becomes an issue
ACollinearity [a and b explain the same part of the variation in the dependent variable] can lead to spurious results

A In this case all VIFs are below 2 [VIFs of 10 means that no absence of total collinearity can be claimed)
\# Variation Inflation Factor (Design library)
vif(i.lc)

A The assumption of independence is violated if clusters in your data are correlated

- Several trials by the same subject
- Several trials of the same item

ASubject/item usually treated as random effects

- Levels are not of interest to design
- Levels represent random sample of population
- Levels grow with growing sample size
- Account for variation in the model [can interact with fixed effects!], e.g. subjects may differ in performance
Subject 9

Subject 20

A In ANOVAs, F1 and F2 analyses are used to account for random subject and item effects

A There are several ways that subject and item effects can be accounted for in Generalized Linear Models [GLMs]

- Run models for each subject/item and examine distributions over coefficients (Lorch \& Myers, 1990)
- Bootstrap with random cluster replacement
- Incorporate random effects into model \rightarrow Generalized Linear Mixed Models [GLMMs]

A Random effects are sampled from normal distribution [with mean of zero)

- Only free parameter of a random effect is the standard deviation of the normal distribution

```
library(lme4)
i.ml <- lmer(Correct ~ RCtype * NPtype + (1 + RCtype *
    NPtype | child), data = i.compr, family="binomial")
summary(i.ml)
```

Factor	Coefficient [in log-odds]	SE	Wald P
Intercept	0.84	0.203	$4.12<0.0001$
RC type=subject	1.82	0.368	$4.95<0.0001$
NP type=pronoun	1.07	0.289	$3.70<0.0003$
RC type * NP type	0.59	0.581	$1.02>0.3$

AUsing an ANOVA over percentages of categorical outcomes can lead to spurious significance
AUsing the 'standard' arcsine transformation did not prevent this problem
^Our ANOVA over 'adapted’ logit-transformed percentages did ameliorate the problem

4 Moving to regression analyses has the advantage that imbalance is less of a problem, and extra covariates can easily be added
^Logistic regression provides an alternative way to analyze the data:

- Gets the right results
- Coefficients give direction and size of effect
- Differences in data log-likelihood associated with removal of a factor give a measure of the importance of the factor

ALogit Mixed models provide a way to combine the advantages of logistic regression with necessity of random effects for subject/item

- subject/item analyses can be done in one model

```
l <- lmer (FinalScore ~
    PrimeStrength * log(TargetOdds) +
    Lag +
    PrimingStyle +
    (1 | SuperSubject) +
    (1 SuperItem),
    data \(=\) k,
    family = "binomial")
summary(i.ml)
```

A Intro to R by Matthew Keller http:/ / matthewckeller.com/html/r_course.html [thanks to Bob Slevc for pointing this out to me]
A Intro to Statistic using R by Shravan Vasishth http://www.ling.unipotsdam.de/~vasishth/Papers/vasishthESSLLIO5.pdf; see also the other slides on his website
A Joan Bresnan taught a Laboratory Syntax class in Fall, 2006 on using R for corpus data; ask her for her notes one bootstrapping and mixed models
a Peter Dalgaard. 2002. Introductory Statistics to R. Springer, http:/ /staff.pubhealth.ku.dk/~pd/ISwR.html
^ Harald Baayen. 2004. Statistics in Psycholinguistics: A critique of some current qold standards. In Mental Lexicon Working Papers 1, Edmonton, 1-45;

http://www.mpi.nl/world/persons/private/baayen/publications/St

 atistics.pdf\& J.C. Pinheiro \& Douglas M. Bates. 2000. Mixed effect models in S and S-plus. Springer, http:/ / stat.bell-labs.com/NLME/MEMSS/index.html [S and $S+$ are commercial variants of R]
\& Douglas M. Bates \& Saikat DebRoy. 2004. Linear mixed models and penalized least squares. Journal of Multivariate Analysis 91, 1-17
a Hugo Quene \& Huub van den Bergh. 2004. On multi-level modeling of data from repeated measures designs: a tutorial. Speech Communication 43, 103-121

