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Abstract

The acquisition of sensory information about the world is a dynamic and interactive experi-

ence, yet the majority of sensory research focuses on perception without action and is con-

ducted with participants who are passive observers with very limited control over their

environment. This approach allows for highly controlled, repeatable experiments and has

led to major advances in our understanding of basic sensory processing. Typical human

perceptual experiences, however, are far more complex than conventional action-percep-

tion experiments and often involve bi-directional interactions between perception and action.

Innovations in virtual reality (VR) technology offer an approach to close this notable discon-

nect between perceptual experiences and experiments. VR experiments can be conducted

with a high level of empirical control while also allowing for movement and agency as well as

controlled naturalistic environments. New VR technology also permits tracking of fine hand

movements, allowing for seamless empirical integration of perception and action. Here, we

used VR to assess how multisensory information and cognitive demands affect hand move-

ments while reaching for virtual targets. First, we manipulated the visibility of the reaching

hand to uncouple vision and proprioception in a task measuring accuracy while reaching

toward a virtual target (n = 20, healthy young adults). The results, which as expected

revealed multisensory facilitation, provided a rapid and a highly sensitive measure of iso-

lated proprioceptive accuracy. In the second experiment, we presented the virtual target

only briefly and showed that VR can be used as an efficient and robust measurement of spa-

tial memory (n = 18, healthy young adults). Finally, to assess the feasibility of using VR to

study perception and action in populations with physical disabilities, we showed that the

results from the visual-proprioceptive task generalize to two patients with recent cerebellar
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stroke. Overall, we show that VR coupled with hand-tracking offers an efficient and adapt-

able way to study human perception and action.

Introduction

Head-mounted virtual reality (VR) provides a multisensory and engaging experience by

immersing the user in a 360˚ computer-generated environment. This technology affords an

opportunity to change the way that perception and action research is conducted, bringing the

potential for tightly controlled yet naturalistic experiments that can be conducted while the

participant is in motion. Historically, action-perception research has generally involved rela-

tively rigid experimental setups where simple stimuli are presented, with participants indicat-

ing their perception with a button press. While this framework has led to major functional and

mechanistic advances in our understanding of how the brain processes sensory stimuli, it

often treats perception as a passive, unidirectional process and belies the complex reciprocity

of the action-perception loop [1]. These experiments typically employ simple, two-dimen-

sional stimuli and are conducted in quiet, confined spaces by stationary participants to achieve

a high degree of experimental control [2]. Further, many studies involving movement tend to

be restricted by a small number of reaching target locations [3–5] or the movement is limited

to small actions such as pressing a button [6–8]. These limitations of typical perception and

action experiments are motivating an effort to develop more active, naturalistic experiments

[9–14]. The goal is to capture the dynamic, bidirectional richness and complexity of everyday

experiences.

The promise of head-mounted VR displays is that they will allow us to conduct much

needed naturalistic and interactive studies of human perception while giving up little, if any, of

the experimental control that is the cornerstone of empirical perception research. With VR,

we can undertake increasingly complex questions about perception while also applying the

findings to more diverse populations in real-life contexts. Neuroimaging research has shown

that human brains are more attuned to complex, naturalistic stimuli over those that are simple

and artificial [15]. VR technology can be customized to present three-dimensional images

[16–18], create the illusion of distant sounds [19,20], and provide haptic feedback to create

engaging, multimodal stimuli that represent the lived experiences of research participants [21–

23]. VR can also incorporate a high degree of control in a realistic and multisensory environ-

ment, ideal for high quality basic research. For example, a recent study used VR in conjunction

with eye-tracking to progressively remove the color from peripheral vision during free-viewing

of immersive 360˚ videos, dramatically revealing the limitations of human color perception in

the visual periphery [24]. This technology has also been used to assess audiovisual speech per-

ception in children [25] and verticality perception in patients with symptoms of dizziness [26].

VR environments can also be constructed to be responsive to user input, allowing partici-

pants to behave closer to how they would in a real-world situation [27–29]. This sense of ‘pres-

ence’, which captures the feeling that a user is truly there in virtual world, results from the

immersion the user feels as a result of realistic multisensory illusions [30,31]. This feeling also

provides a sense of agency over the environment, increases task engagement, and can affect

cognition, social behavior, and memory [1,32,33]. Naturalistic stimuli also capture and main-

tain attention more authentically than simple two-dimensional stimuli because they tap into

more sophisticated top-down attention pathways that incorporate context, prior knowledge,

and goals rather than purely feature-based attention [34].
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A recent benefit of head-mounted VR lies in its ability to easily capture data from a moving

participant, allowing perception and action to be studied simultaneously during active, full-

body tasks. As most research on perception is conducted with a stationary participant, this

ability to concurrently examine how people physically interact with and respond to their envi-

ronment provides new opportunities to study the action-perception loop. Further, some VR

headsets are able to track the position of the hands in real time, including precise finger move-

ments. One such device, the Oculus Quest (Meta, USA) has< 1 cm tracking accuracy in good

environmental conditions [35]. The implications of simple and effortless body tracking tech-

nology are considerable; in particular, experiments studying human movement, posture, and

proprioception in clinical populations stand to benefit from this technology. Crucially, the

portability of VR headsets means that research can occur in places that cannot accommodate

traditional lab equipment, such as a hospital room or out in the community. Larger groups of

more diverse populations can be tested because conditions can be replicated with very high

fidelity regardless of the participant’s location or circumstances. Commercially available VR

headsets are also impressively accessible in terms of cost, portability, and ease of use. As a por-

table “lab in the box,” a headset has the potential to increase sample sizes, reach under-studied

populations, and promote long-distance scientific collaborations.

One area of VR research that has received a great deal of attention is in stroke rehabilitation,

with a specific focus on visual-motor coordination and perception. Over 100 randomized con-

trol trials have been conducted testing VR technology with people recovering from stroke,

with the majority published in the past five years. There is substantial diversity in the attributes

of the investigations: studies have been conducted in the home [36–38], in conjunction with

telehealth resources [39–41], and in patients with both acute [42–44] and chronic [45–47]

stroke. The majority of work on motor rehabilitation only assessed gross motor skills (e.g.,

reaching) by tracking the position of the handheld controller [44,48] or tracked finger motion

by using supplemental specialty equipment [49,50]. However, persistent fine motor dysfunc-

tion is a common consequence of stroke and dramatically affects activities of daily living

[51,52], requiring rehabilitative techniques that target fine motor skills. Hand-tracking tech-

nology built into VR offers a promising avenue to examine the speed, accuracy, and consis-

tency of fine motor movements as baseline assessments and/or measures of rehabilitative

progress.

To assess the feasibility of using VR technology to study fine motor skills in both healthy

and clinical populations, the present study employed hand-tracking to measure accuracy in

simple reaching tasks while varying multisensory and cognitive demands. This study was

inspired by previous tasks that used mirrors [53] or tablets [54] to manipulate hand or target

visibility during reaching. Two different experiments were conducted with healthy young

adults: one assessed visual-proprioceptive integration versus isolated proprioception, and the

other tested spatial memory. These two tasks were selected to examine the sensitivity of VR-

based reaching assessment under different sensory and cognitive conditions. The visual-pro-

prioceptive task was also completed by two individuals with recent cerebellar strokes to evalu-

ate the practicality of successfully collecting this data with individuals with motor or vision

difficulties. Overall, the goal of this study was to evaluate whether VR-based hand tracking can

serve as a sensitive measure of differences in fine motor movements across various conditions

in individuals with and without visuo-motor disabilities.

Materials and methods

For Experiments 1 and 2, healthy young adult participants were recruited from the University

of Rochester and the greater Rochester community. For experiment 3, two patients
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rehabilitating from cerebellar strokes at Strong Memorial Hospital (Rochester, NY) were

recruited. Each healthy participant completed the Edinburgh Handedness Inventory [55] and

a demographic survey. All participants had normal or corrected to normal hearing and all

healthy participants had normal or corrected to normal vision. Written informed consent was

obtained from all participants as approved by University of Rochester Research Subjects

Review Board.

The virtual reality experiments were conducted using a 1st generation head-mounted Ocu-

lus Quest running the latest OS/firmware at the time of testing. UNITY version 2019.4.2f was

used to create the experiments. SideQuest, a free 3rd party software, was used with the scrcpy

plugin (https://github.com/Genymobile/scrcpy) so experimenters could monitor what the par-

ticipant saw on the headset during the experiment. Healthy participants were seated in the

experiment room on a stationary chair whereas participants with recent stroke conducted the

experiment in a stationary chair next to their hospital bed. All experiments were conducted

with no objects in front of the participants in rooms with good lighting to optimize the envi-

ronment for hand-tracking. All participants were given a brief introduction on how to navigate

the virtual reality setup. Participants were instructed to keep their shoulders against the back

of the chair during the entire experiment and were monitored continuously and given remind-

ers as necessary. The Oculus Guardian system, intended to prevent actively moving users from

exiting the designated ‘safe’ area by providing a visual warning when the user approaches the

periphery of the Guardian area, was disabled to avoid disrupting the experiment. All partici-

pants were monitored continuously to maintain a safe experience. Participants were told to

put the headset on and to adjust the straps so that it was comfortable. Those wearing corrective

lenses were able to wear them under the headset. Help was offered if requested. Participants

were also shown the inter-pupillary distance slider at the bottom of the headset, and told to

move it around until they found their “sweet spot,” where the images/text were clearest and

most legible. The inter-pupillary distance on the Quest headset ranges from 58mm–72mm.

This wide range allowed participants to adjust the lens spacing for a comfortable viewing expe-

rience in VR.

Once each experiment loaded, participants viewed a grey, featureless room. Instructions

appeared directly in front of them, and rendered representations of each of their hands

appeared. These hand renderings moved and articulated in real-time corresponding to the par-

ticipant’s real hand movements. Participants were asked to indicate which was their dominant

hand; once a hand was selected, only that hand was visible and functional for the remainder of

the experiment. To ensure the reaching distance was appropriate to the size and motor func-

tion of each individual, participants extended their dominant arm to calibrate the reaching dis-

tance before each experiment. The distance from the end of the extended arm to the headset

was used as the distance of the radius on which target stimuli would appear.

Each healthy participant completed one practice session and two separate experiments, the

Visible/Invisible Hand experiment and the Memory Delay experiment (see supporting infor-

mation S1 and S2 Videos). Stroke patients completed one practice session and only the Visi-

ble/Invisible Hand experiment to reduce fatigue and avoid possible confounding cognitive

factors in the Memory Delay experiment. In each trial of the practice session, a pink sphere

(target) appeared along an invisible 60-degree arc at arm’s length in front of the participant;

the radius of this arc was set by the extended arm in the experiment’s introduction and the arc

extended indefinitely vertically. Using their dominant hand, participants were instructed to

touch the target sphere with their index finger. Each trial ended when the fingertip passed

through the arc; the target would then disappear and the next trial would begin regardless of

the accuracy of the reach. They were then instructed to move their hand back to touch a cube

that appeared just in front of their chest. The cube served as a reset point that appeared once
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the target sphere disappeared. Once the index finger touched the cube, the cube would disap-

pear and after 500 ms a new target sphere would appear randomly along the 60-degree arc.

The program specifically recorded the difference in degrees between where the tip of the index

finger passed through the arc and the center of the target, accounting for both horizontal and

vertical error. Participants were encouraged to take breaks by resting their hands on their lap

to avoid fatigue. Participants completed practice trials until they felt comfortable with the

motions and the experimenter deemed them ready to begin the experiments.

The two experimental conditions retained the same basic structure as the practice session,

but with two sets of key modifications.

Experiment 1 –Visible/Invisible Hand

This experiment used the same introduction and structure as the practice session, but in 50% of

the trials the rendering of the dominant hand became invisible during the reaching phase (Fig 1A

and 1B). In these invisible hand trials, the participant had no visible feedback on where their hand

was while they were reaching for the target, forcing high reliance on proprioception. The hand

reappeared only after the reach movement was completed. Each participant completed 10 practice

trials and 200 experimental trials. Experimental trials were split into 100 hand visible randomly

interspersed with 100 hand invisible trials. For examples of both types of trials, see supporting

information S1 Video. The experiment took between 5–6 minutes to complete in healthy adults.

Experiment 2 –Memory Delay

This experiment used a similar introduction and structure as the practice session, but in 50%

of trials we imposed a memory demand on the reaching task (Fig 2). 500 ms after the partici-

pant touched the reset cube, the target would appear and be followed by a tone 1200 ms later.

The tone had a frequency of 440 Hz and a duration of 100 ms, and was set at a volume com-

fortably audible for each individual participant. The tone was presented bilaterally and acted

as a cue for the participant to reach for the target location. In this experiment, the hand

remained visible for the entire duration of the experiment. The critical manipulation was the

visibility of the target before the reach. In 50% of the trials the target sphere would remain visi-

ble for the entire duration of the trial (Fig 2A). In the remaining 50% of the trials, the target

sphere would only appear for 200 ms then disappear for the remaining 1000ms before the tone

and remain invisible during the subsequent reach movement (Fig 2B), requiring the use of spa-

tial memory to guide the reach. This approach mirrors established memory-guided reaching

tasks by introducing a one second delay [56,57]. As in Experiment 1, participants completed

10 practice trials and 200 experimental trials. The program randomly interspersed the 100 tri-

als in which the target sphere remained visible and the 100 trials in which the target sphere dis-

appeared. For examples of both types of trials, see supporting information S2 Video. The

experiment took 8–9 minutes to complete.

Experiment 3 –Visible/Invisible Hand after cerebellar stroke

This experiment was identical to Experiment 1, except that the participants included two

patients with recent cerebellar stroke. The only difference was that patients took between 15

and 20 minutes to complete the experiment.

Statistical analysis

All experiments measured reaching accuracy of the dominant index finger by calculating the

difference in degrees between the center of the target sphere and where the tip of the index
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finger passed through any point along the 60-degree arc where the target could appear. This

accuracy was compared between the two conditions of each experiment. In addition, each

individual’s precision was calculated as the standard deviation of their endpoint accuracy in

Experiments 1 and 2. In Experiments 1 and 3, the reaching time–defined as the amount of

time between when the target appeared and when the participant’s index finger crossed the arc

—was also recorded. This data is not available for Experiment 2. In all experiments, reaching

accuracy was the main outcome measure as it has the greatest potential clinical significance

and effect on quality of life and independence. Statistical testing was done with SPSS software

version 28 (IBM Corp, Armonk, NY, USA) or MATLAB 2021a software (Mathworks, Natick,

MA, USA). Shapiro-Wilk tests of normality were conducted on reaching time, accuracy, and

precision in each condition in all experiments, with one or more conditions in each

Fig 1. Task and stimuli in the Visible/Invisible Hand experiment. Each trial starts with a green cube appearing in

front of the participant’s chest. After the cube is touched, the cube disappears and a pink target sphere appears along a

60-degree arc in front of the participant at arm’s length. When participant’s index finger passes through the arc, it

explodes and the trial ends. A new cube appears to begin the new trial. A) In the visible hand condition, the rendering

of the hand is visible during the entire trial. B) In the invisible hand condition, the rendering of the hand is invisible

during the reach phase. That is, the hand rendering disappeared when the cube was touched, reappearing only at the

completion of the reach movement. For a video of this experiment, see supporting information S1 Video.

https://doi.org/10.1371/journal.pone.0275220.g001
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experiment determined as non-normally distributed. Related-Samples Wilcoxon Signed Rank

Tests were used in Experiments 1 and 2, as statistics were assessed on a group level. In Experi-

ment 3, Independent Samples Mann-Whitney U Tests were conducted because statistics were

assessed on an individual level. In Experiments 1 and 3, outliers of> 3 standard deviations

away from each individual’s mean were removed from the reaching time data. In Experiment

1, an average of 2.05 ± 1.00 outlier trials in the visible condition and 2.30 ± 1.26 trials in the

invisible condition were removed per participant. In Experiment 3, 7 outlier trials in the visible

condition and 2 in the invisible condition were removed for patient 1, and 6 outlier trials in

the visible condition and 8 in the invisible condition were removed for patient 2. In all three

experiments, reaching accuracy was also assessed including data from only the first 25 trials to

test whether our approach is sensitive enough to detect the main results in substantially abbre-

viated versions of our experiments. Slopes of the change in reaching accuracy over time across

conditions were normal across experiments; one sample t tests were conducted to assess

whether the slope of the average error differed from zero. No power analyses were conducted

prior to data collection because no suitable previous work was available to estimate the sample

size needed.

Fig 2. Task and stimuli in the Memory Delay experiment. Each trial starts with a green cube appearing in front of

the participant’s chest. 500 ms after the cube is touched, the pink target sphere appears along a 60-degree arc at arm’s

length. 1200 ms later, a tone indicates that a participant is free to reach out to the target. When participant’s index

finger passes through the arc, it explodes and the trial ends. A new cube appears to begin the new trial. A) In the

standard condition, the target remained visible for the entire trial. B) In the memory delay condition, the target

disappeared 200 ms after its appearance, remaining invisible for the 1000ms before the tone was played and during the

subsequent reach movement. For a video of this experiment, see supporting information S2 Video.

https://doi.org/10.1371/journal.pone.0275220.g002
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Results

Twenty participants, 8 male and 12 female, participated in Experiment 1, with a mean age of

23.4 (st. dev. = 2.6). Eighteen of these participants, 8 male and 10 female, also participated in

Experiment 2, with a mean age of 23.6 (st. dev. = 2.7). Information on the two patients rehabil-

itating from recent cerebellar stroke is found in Table 1. All participants, including patients,

were right-handed, and reported no developmental or psychiatric disorders.

Experiment 1 –Visible/Invisible Hand

The virtual hand experiment elucidated a clear, robust difference in the reaching accuracy when

the virtual rendering of the hand was visible compared to when it was invisible (Fig 3A and 3B).

We found a significant difference between the average reaching error in visible (2.24˚ ± .25˚) and

invisible (3.80˚ ± .19˚) hand conditions (T = 204.00, z = 3.70, p< .001; Fig 3A). This difference

was observed in a large majority of individual participants (Fig 3B). There was also a significant

difference between the average reaching precision in visible (1.58˚ ± .76˚) and invisible (1.93˚ ±
.69˚) hand conditions (T = 160.00, z = 2.05, p = .04). Precision and accuracy were shown to be

positively correlated for both the visible (r(18) = .708, p< .01) and invisible (r(18) = .49, p = .02)

hand conditions. There was no significant difference between the average reaching times in visible

(625 ms ± 105 ms) and invisible (617 ms ± 160 ms) hand conditions (T = 87.00, z = -.67, p = .50).

To determine the sensitivity of this experiment at capturing differences in reaching accu-

racy, we repeated these statistical tests with only the first 25 trials of each condition. The differ-

ence between the visible (2.44˚ ± .37˚) and invisible (3.39˚ ± .52˚) hand reaching accuracy

remained significant (T = 199.00, z = 3.51, p< .001). This finding, displayed in Fig 3C and 3D,

confirms that the length of this experiment could be reduced to a fraction of the original length

and still provide the same reliable, highly significant result in healthy adults. Participant level

data is shown in Fig 4 to demonstrate the robust consistency of this data across participants

and across the duration of the experiment.

To measure the stability of task performance over time and detect possible learning or

fatigue effects, we assessed whether reaching accuracy results in either condition changed

throughout the course of the experiment. On a group level, the slope of the average error was

not significantly different from zero in both the visible hand (m = .002, std dev = .01, t19 = .93,

p = .36) and the invisible hand condition (m = -.0005, std dev = .01, t19 = -.27, p = .79). Evi-

dently, performance remained steady over the course of the full experiment, implying that

there was no measurable learning or fatigue effects.

Experiment 2—Memory Delay

The results of the Memory Delay experiment followed the same pattern as the Visible/Invisible

Hand experiment, though results were slightly less robust. We found a significant difference

Table 1. Descriptions of patients included in recent stroke cohort.

Age

(years)

Time since stroke at time of

participation (days)

Type of stroke Level of motor/visual disability at time

of participation

Patient

1

72 10 • Large ischemic infarct in right cerebellum • No muscular weakness, severe ataxia in

right arm/leg

• Reported horizontal diplopia

Patient

2

75 1 • Multifocal ischemic strokes, including large infarct in right

cerebellum and right occipital lobe

• No muscular weakness, mild ataxia in

right arm/leg

• Right homonymous hemianopia

https://doi.org/10.1371/journal.pone.0275220.t001
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between the average reaching accuracy error in the non-delayed standard condition (2.28˚ ±
.27˚) and delayed target condition (3.45˚ ± .32˚; (T = 170.00, z = 3.68, p< .001; Fig 5A). Indi-

vidual participant data is shown both as averages (Fig 5B) and with all trials shown (Fig 6).

There was a significant difference between the average reaching precision in standard (1.47˚ ±
.70˚) and delayed target (3.36˚ ± 3.54˚) conditions (T = 155.00, z = 3.03, p< .01). Precision

and accuracy were shown to be positively correlated for both the standard (r(16) = .48, p = .04)

and the delayed (r(16) = .69, p< .01) conditions.

Additional testing including only the first 25 trials continued to yield significant differences

between the standard (2.00˚ ± .21˚) and delayed (3.37˚ ± .92˚) target conditions with respect to

reaching accuracy (T = 158.00, z = 3.16, p< .01). Fig 5C and 5D demonstrate this robust

Fig 3. Results of the Visible/Invisible Hand experiment in healthy adults. (A) Group-level average reaching error as

a function of hand visibility in all 100 trials. Yellow: Visible-hand condition. Blue: Invisible-hand condition. Error bars

denote the standard error of the mean. (B) Results for 20 individual participants as a function of hand visibility in all

100 trials. (C) Group-level average reaching error as a function of hand visibility in the first 25 trials. (D) Results for 20

individual participants as a function of hand visibility in the first 25 trials.

https://doi.org/10.1371/journal.pone.0275220.g003
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finding after only a quarter of the total trials, affirming that the length of the total experiment

could be substantially shorter the original and still reliably distinguish between trial

conditions.

We again tested whether reaching accuracy in the two conditions changed over the course

of the experiment to evaluate whether there were any learning or fatigue effects. On a group

level, the slope of the average error was not significantly different from zero in both the stan-

dard (m = .0019, std dev = .01, t17 = -.006, p = .464) and delayed condition (m = .000674, std

dev = .02, t17 = .45, p = .773). Thus, as with the first experiment, there were no significant

changes in accuracy over time.

Experiment 3—Visible/Invisible Hand after cerebellar stroke

We focused on the Visible/Invisible Hand experiment in patients with recent cerebellar strokes

because the multisensory visual-proprioceptive interaction emphasizes body coordination,

which is often affected by stroke [52]. This also minimized testing burden for the patients, who

completed the experiment with their affected hands. In both patients, we found clear differen-

tiation of reaching accuracy with and without assistance of vision (Fig 7A and 7C). Significant

differences between the average reaching error in the visible (patient 1: 5.23˚ ± 2.17; patient 2:

3.49˚ ± 2.41˚) and invisible (patient 1: 8.94˚ ± 3.47; patient 2: 7.56˚ ± 2.60˚) hand conditions

were found on an individual level: patient 1 U(Nvisible = 99, Ninvisible = 99) = 3872.00, z = -2.55,

p = .01; patient 2 U(Nvisible = 99, Ninvisible = 99) = 8053.00, z = 7.82, p< .001. There were signif-

icant differences between the average reaching times in visible (patient 1: 1781 ± 1270 ms;

patient 2: 4339 ± 6066) and invisible (patient 1: 1475 ± 916 ms; patient 2: 2922 ± 2145 ms)

hand conditions (patient 1: U(Nvisible = 94, Ninvisible = 98) = 3724.50, z = -2.29, p = .02); patient

2: U(Nvisible = 95, Ninvisible = 92) = 3615.000, z = -2.04, p = .04).

We again assessed reaching accuracy after only 25 trials for each individual patient. The dif-

ference between the visible (patient 1: 5.63˚ ± 1.21; patient 2: 4.98˚ ± 3.23˚) and invisible

Fig 4. Reaching errors for each individual trial in 20 healthy adult participants in the Visible/Invisible Hand

experiment. This depiction of the data allows for visualization of data stability over the course of the experiment.

Yellow: Visible-hand condition. Blue: Invisible-hand condition.

https://doi.org/10.1371/journal.pone.0275220.g004
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(patient 1: 11.66˚ ± 3.39˚ patient 2: 6.89˚ ± 3.18˚) hand reaching accuracy was significant:

patient 1 U(Nvisible = 25, Ninvisible = 25) = 605.00, z = 5.68, p< .001; patient 2 U(Nvisible = 25,

Ninvisible = 25) = 418.00, z = 2.05, p = .04 (Fig 7B and 7D). Participant level data is shown in

Fig 8.

Given the weakness and fatigue associated with cerebellar stroke, we evaluated the slope of

the reaching error over time in each individual participant to assess for changes in accuracy

over the course of the experiment. To determine statistical significance, we performed a boot-

strap analysis in which we generated 10,000 bootstrap data sets. In each data set, trials were

randomly resampled without replacement, thus retaining the overall distribution of the results

but eliminating any temporal patterns of performance. This allowed us to assess the probability

Fig 5. Results of the Memory Delay experiment in healthy adults. (A) Group-level average reaching error as a

function of memory demand in all 100 trials. Yellow: Non-delayed standard condition. Blue: Delayed condition. Error

bars denote the standard error of the mean. (B) Results for 18 individual participants as a function of memory demand

in all 100 trials. (C) Group-level average reaching error as a function of memory demand in the first 25 trials. (B)

Results for 18 individual participants as a function of memory demand the first 25 trials.

https://doi.org/10.1371/journal.pone.0275220.g005
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that the observed slopes (Fig 8) differed from zero. In the visible hand condition, patient 1 had

a slope of -.024 (p = .002) and patient 2 had a slope of -.025 (p = .001)—both showing signifi-

cant improvement in performance over time. In the invisible hand condition, patient 1 had a

negative slope of -.055 (p =< .0001) and patient 2 had a positive slope of .019 (p = .042). These

findings show a mix of improvement and worsening that may reflect a learning effect or

fatigue throughout the experiment.

Discussion

Our results provide early evidence for the utility of built-in hand tracking in head-mounted

VR equipment to quickly capture precise information about reaching accuracy. We were able

to establish a significant faciliatory effect of vision on reaching accuracy (Fig 3) and demon-

strate that adding memory demands impairs reaching accuracy (Fig 5). Our findings that peo-

ple reach more accurately and precisely, though not more quickly, toward a point when they

can see their hand and when the target is visible are not surprising. They confirm earlier data

that vision improves accuracy and precision during reaching [58,59] and that reaching accu-

racy and precision deteriorate when memory is required to locate the target [60,61]. Rather,

the novelty of the methods outlined in this paper lies in the manipulation of the sensory expe-

rience beyond what is possible in physical reality while collecting robust, consistent data any-

where in a matter of minutes.

By controlling the visual feedback provided by the hand rendering, we are able to uncouple

vision and proprioception in the Visible/Invisible Hand experiment, offering a window into

how these sensory modalities interact. Typically vision and proprioception are difficult to tease

apart without the use of complex equipment such as mirrors [62] and robotics [63], but the

use of this new VR technology allows for easy and modifiable adaptations. For example,

instead of removing the visual representation of the hand, the rendering of the hand could

instead be delayed or shifted to a different location to measure how these changes influence

the weighting of visual and proprioceptive information. This weighting remains poorly under-

stood in various clinical populations–such as cerebral palsy [64,65], Parkinson’s disease

Fig 6. Reaching errors for each individual trial in 18 healthy adult participants in the Memory Delay experiment.

This depiction of the data allows for visualization of data stability over the course of the experiment. Yellow: Non-

delayed standard condition. Blue: Delayed condition.

https://doi.org/10.1371/journal.pone.0275220.g006
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[66,67], and autism spectrum disorder [68,69]–that will benefit from research that can isolate

and analyze the contributions of each sense and how they change over time.

By introducing a delay and requiring the participants to conduct their reaching movements

based on recall, the Memory Delay experiment further assesses reaching in circumstances that

require greater cognitive resources. While the delay in this paradigm was relatively short at 1

second, it still has a clear effect on the reaching accuracy. While this effect of memory is

expected, our approach offers a way to investigate the spatial representation of memory in a

three-dimensional setting. The environment can remain tightly controlled while objects are

manipulated, allowing for structured and replicable assessments of spatial memory and navi-

gation. Populations such as older adults and people with recent traumatic brain injury will

benefit from further research on the interaction between memory and the ability to navigate a

three-dimensional space [70,71].

Fig 7. Results of the Visible/Invisible Hand experiment in patients with recent cerebellar strokes. (A) Reaching

error as a function of hand visibility in all 100 trials in patient 1. Yellow: Non-delayed standard condition. Blue:

Delayed condition. Error bars denote the standard error of the mean. (B) Reaching error as a function of hand

visibility in the first 25 trials in patient 1. (C) Reaching error as a function of hand visibility in all 100 trials in patient 2.

(D) Reaching error as a function of hand visibility in the first 25 trials in patient 2.

https://doi.org/10.1371/journal.pone.0275220.g007

Fig 8. Reaching errors for each individual trial in two patients with recent cerebellar stroke. This depiction of the

data allows for visualization of data stability over the course of the experiment. Yellow: Visible-hand condition. Blue:

Invisible-hand condition.

https://doi.org/10.1371/journal.pone.0275220.g008
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Our study also contributes to decades of research confirming benefits when multisensory

information is available in domains as varied as memory [72], learning [73], and reaction time

[74]. In validating the use of VR to study multisensory processes, this new technique provides

the capacity to expand on these traditional paradigms to evaluate participants as they move

interactively with their environment. Overall, this approach allows for the measurement of

action-perception data in a multisensory, naturalistic setting that can be adapted to mimic a

variety of real-life scenarios better than the simple and predictable conditions typically found

in the lab.

Critically, these experiments also show that VR can be used to efficiently and effectively

measure reaching accuracy not only in healthy individuals, but also in those with vision or

motor disabilities caused by cerebellar infarct. The self-paced nature of these experiments

means that they can be adapted to suit individuals with limited mobility, and the ability to

adjust the inter-pupillary distance and head position allows for reasonable correction of minor

visual issues, as done with the first patient’s diplopia. These features allow for the collection of

baseline information on post-stroke gross and fine motor skills at a very early stage of recovery

and provide the opportunity to potentially distinguish between the effects of ocular and cere-

bellar issues. Of note, both the results with healthy young adults and those with patients were

found to be significant after only a fraction of the trials, indicating that the task could be sub-

stantially shortened and still provide a sufficiently precise measure of reaching accuracy. This

rapid pace is particularly significant in the context of individuals with muscle weakness who

may not be able to sustain activity for long periods of time.

Our results also show that even over a limited number of trials individuals with recent

stroke demonstrate changes in their reaching accuracy, suggesting that this paradigm is sensi-

tive to improvement or deterioration, critical for use in rehabilitative training. Of note, we

detected a dissociation between the amount of fatigue in the isolated proprioception trials and

the visual-proprioceptive integration trials in one of the stroke patients. The ability to measure

these differences offers exciting opportunities to learn more about how specific sensory prop-

erties are affected by stroke. Moreover, the back-and-forth reaching design of our experiments

mimics a clinical evaluation of motor coordination called the finger-to-nose test. By evaluating

a patient’s ability to quickly and accurately reach for both an externally-referenced target (the

administrator’s finger) and a self-referenced target (the patient’s nose), this clinical test serves

as rapid yet imprecise way to measure coordination. Many clinicians use the finger-to-nose

test to measure upper-body coordination over the course of stroke recovery [75,76], but it

remains a subjective tool with limited external validity. Using our VR paradigm, these same

fine motor skills can be assessed in a way that provides detailed measurements without the

need of a trained clinician to administer a coordination assessment.

As preliminary work, this study contains several limitations. While there are many benefits

to the flexibility of a VR experience, the self-guided nature of it does introduce some differ-

ences in the stimulus presentation from person to person. This technique achieves more realis-

tic interactions in a less repetitive and predictable environment, but does somewhat decrease

the degree of control the experimenter has over the consistency of the experience. The experi-

ments detailed above were self-paced, meaning that some participants could choose to move

quickly and may be prone to greater errors while others could choose to take their time and

demonstrate higher accuracy. Future work in which rate of action is a concern can employ a

system to artificially pace the participant could be introduced. With this present study how-

ever, because each participant served as their own control and the trials of the two conditions

in each experiment were randomly intermixed, we believe that the differences between condi-

tions remains a valid metric of accuracy differentiation on an individual basis. This single-sub-

ject design also accounts for any variability in familiarity with VR, which otherwise could have
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provided an advantage to those who have used VR in the past. The technology itself also has

limitations, as the hand tracking accuracy has limitations associated with camera frame rate

and figure/ground segmentation issues. These problems could cause gaps in tracking that may

influence results, but the environment was well-lit and kept clear of objects that would inter-

fere with tracking to reduce these confounds during each experiment.

Our sample size of adults with recent cerebellar stroke is small and is not representative of

the wide variability of motor and visual complications that can be caused by a stroke. Our fea-

sibility experiment intends only to show that VR is sensitive, adaptable, can be used by individ-

uals with a variety of limitations, and can be conducted at the bedside. The patient group is

also solely comprised of older adults, indicating that at this stage limited conclusions can be

made about the role of recent stroke because age is a strong confounding factor. Future work

should include a sample of healthy older adults who can be compared to the group of older

adults with recent stroke to evaluate accuracy and learning differences.

Conclusion

This paper highlights the promising application of commercially available virtual reality head-

sets to efficiently study perceptual and motor processing during naturalistic hand movements.

Differences in reaching accuracy in various conditions were measurable in a short amount of

time with very few trials. By studying the action-perceptual loop in a dynamic, multisensory

environment, the field of psychophysics can move closer to understanding how perception

varies across real-life settings. The adaptability and mobility of this equipment also offers

opportunities to uncouple visual and proprioceptive cues to study the weighting and interac-

tion of these domains in clinical populations in any setting. As affordable and accessible tech-

nology, future work incorporating additional participant groups and multisensory

environments offers great potential to understand how different factors affect sensory

processing.
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