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Prediction is a fundamental brain function that enables 
more effective interaction with an inherently dynamic 
environment (Heeger, 2017). It allows people not only 
to make inferences about the future but also to interpret 
the current events in the context of past history. A 
recent theory proposes that this ability to make predic-
tions is impaired in individuals with autism spectrum 
disorder (ASD; Gomot & Wicker, 2012; Hellendoorn 
et al., 2015; Pellicano & Burr, 2012; Sinha et al., 2014). 
The theory posits that the seemingly distinct core defi-
cits associated with ASD—social communication chal-
lenges and the presence of restricted and repetitive 
behaviors—may be explained by fundamental deficits 
in detecting predictive relationships in the environment 
(Sinha et al., 2014). For example, theory of mind, a well-
known challenge for individuals with ASD (e.g., Baron-
Cohen, 2000), requires predicting another individual’s 

emotional or cognitive states on the basis of both imme-
diately available social cues and one’s previous history 
of observations about this person. Likewise, ASD symp-
toms related to insistence on sameness have been con-
ceptualized as a way to cope with the unpredictability 
of the world (Markram & Markram, 2010; Sinha et al., 
2014).

In the present study, we examined the integrity of 
visual motion-prediction abilities—a domain in which 
events unfold rapidly, sometimes within a millisecond 
timescale—in individuals with ASD. A prediction impair-
ment on such a brief timescale can have negative con-
sequences on everyday visual tasks in which individuals 
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Abstract
A recent theory posits that prediction deficits may underlie the core symptoms in autism spectrum disorder (ASD). 
However, empirical evidence for this hypothesis is minimal. Using a visual extrapolation task, we tested motion-
prediction abilities in children and adolescents with and without ASD. We examined the factors known to be important 
for motion prediction: the central-tendency response bias and smooth-pursuit eye movements. In participants with 
ASD, response biases followed an atypical trajectory that was dominated by early responses. This differed from 
control participants, who exhibited response biases that reflected a gradual accumulation of knowledge about stimulus 
statistics. Moreover, although better smooth-pursuit eye movements for the moving object were linked to more accurate 
motion prediction in control participants, in participants with ASD, better smooth pursuit was counterintuitively linked 
to a more pronounced early-response bias. Together, these results demonstrate atypical visual prediction abilities in 
people with ASD and offer insights into possible mechanisms underlying the observed differences.
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interact with dynamic objects. For instance, children 
with ASD may have difficulty catching balls ( Jasmin 
et al., 2009; Whyatt & Craig, 2012), which is often attrib-
uted to gross motor difficulties. However, deficits in 
visual prediction may offer an alternative explanation, 
one that is more consistent with firsthand accounts of 
such difficulties (Sinha et al., 2014). In addition, visual 
motion processing is a well-characterized sensory func-
tion and has been used in a wide range of studies to 
make inferences about higher level cognitive functions 
(Park & Tadin, 2018; Pasternak & Tadin, 2020). Thus, 
testing visual motion prediction offers a tractable way 
to study prediction mechanisms in people with ASD, 
with possible implications for both perceptual behavior 
and general prediction abilities in people with ASD.

Prediction, even in its arguably simpler visual form, 
is not a unitary process. Motion-prediction performance 
is affected by several key perceptual and oculomotor 
factors (Bosco et al., 2015). A growing number of stud-
ies have emphasized the role of extraretinal signals (i.e., 
sources of motion information available outside of reti-
nal visual signals), such as those from eye movements, 
in facilitating motion prediction. Typically, observers 
visually track a moving object using smooth-pursuit eye 
movements. As the object disappears behind an 
occluder, smooth-pursuit velocity diminishes, and peo-
ple make predictive saccadic eye movements to the 
target location where the object would arrive (Bennett 
& Barnes, 2003, 2004; Diaz et al., 2013; Orban de Xivry 
et al., 2006). Critically, studies have shown that better 
quality of pursuit is associated with better prediction 
performance (Delle Monache et al., 2014; Spering et al., 
2011, 2013). The rationale is that extraretinal signals 
from smooth pursuit provide additional information 
about object motion (Spering et  al., 2011), which is 
especially useful when visual stimulation is absent (e.g., 
during occlusion).

Motion prediction relies not only on current sensory 
inputs but also on the recent history of object motion 
(Kwon & Knill, 2013). As people gain knowledge on the 
statistics of a stimulus distribution, they integrate that 
with the current sensory information to make perceptual 
judgments (Knill & Pouget, 2004). As a result, responses 
are subject to different sources of bias, depending on the 
statistics of the learned stimulus distributions. One par-
ticular example is the central-tendency bias (Hollingworth, 
1910), in which people’s perceptual estimates are 
biased toward or away from the mean of the stimulus 
distribution. This pattern has been observed not only 
in motion prediction (Kwon & Knill, 2013) but also in 
a wide range of tasks and domains (Hollingworth, 1910; 
Jazayeri & Shadlen, 2010; Makin et al., 2009; Verstynen 
& Sabes, 2011). Although the existence of bias might 
seem maladaptive at first glance, it reflects the visual 

system’s strategy to make the best possible predictions 
under conditions of uncertainty by using prior observa-
tions. In fact, overall performance error decreases when 
the magnitude of the central-tendency bias is optimal 
(e.g., Jazayeri & Shadlen, 2010).

Thus, together with the extraretinal signals, prior 
knowledge of stimulus distributions is a cue one can 
rely on for visual motion prediction. This may be of 
particular importance in ASD research given recent pro-
posals on how individuals with ASD integrate current 
sensory estimates with past knowledge. Specifically, the 
theory postulates that individuals with ASD are less 
influenced by prior information when making percep-
tual judgments (Pellicano & Burr, 2012; for an alterna-
tive hypothesis, see Brock, 2012). Similar patterns of 
behavior (i.e., increased sensitivity to current sensory 
stimulation and less emphasis on the past) have been 
more recently hypothesized and characterized by a 
broader framework of predictive processing in ASD as 
a tendency for greater weighting on prediction errors 
(e.g., Van de Cruys et al., 2014; for a review, see Palmer 
et al., 2017).

Studies in people with ASD have had mixed findings 
on whether motion-prediction abilities and the associ-
ated ocular responses are impaired in this population. 
A recent study reported an impairment in young adults 
with ASD when making predictions during straight self-
motion (i.e., forward motion) but not curved trajectories 
(Sheppard et al., 2016), whereas another study reported 
no deficits in children and young adolescents with ASD 
for horizontal motion (Tewolde et al., 2018). Some evi-
dence suggests atypicalities in a variety of basic eye-
movement characteristics across a wide age range of 
people with ASD (Freedman & Foxe, 2018; Sweeney 
et  al., 2004; Takarae et  al., 2004), which in turn can 
deteriorate prediction in cases in which extraretinal 
signals might be essential. In tasks in which eye move-
ments reflected predictions, fewer predictive saccades 
in adolescents with ASD have been reported (Goldberg 
et al., 2002). However, other studies have shown intact 
anticipatory pursuit (Aitkin et al., 2013; Ego, Bonhomme, 
et al., 2016) and intact pursuit gain and predictive accel-
eration during occlusion (Ego, Bonhomme, et al., 2016) 
in adolescents and young adults with ASD. These stud-
ies used highly “predictable” conditions (e.g., saccade 
targets alternated at regular intervals, or use of a fixed 
occlusion duration) to specifically assess whether the 
eye movements reflect or aid predictions. Such regular-
ity, however, makes it difficult to assess possible group 
differences in more dynamic conditions that are com-
mon in the natural environment.

Here, we investigated motion-prediction abilities in 
children and adolescents with ASD and in age- and IQ-
matched typically developing (TD) control participants. 
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We used a simple hitting task (Fig. 1a) in which partici-
pants extrapolated the motion of a briefly presented 
stimulus (constant speed) and made a key-press 
response when they thought the stimulus had arrived 
at a target location (Kwon & Knill, 2013). The task is 
similar to natural interception behaviors, which often 
directly impose prediction demands. Imagine catching 
a ball in baseball. The available visual information is 
limited by various sources (e.g., occlusion from other 
players or changes in one’s own gaze) such that one 

needs to predict the motion trajectory for appropriate 
action. To evaluate individuals’ prediction performance 
and understand how they make use of available infor-
mation, we manipulated the stimulus duration before 
occlusion (visible duration) as well as the time to arrival 
(occluded duration).

The goal of the study was twofold. First, we tested 
whether individuals with ASD are impaired in motion 
prediction. For this, we measured the different types of 
prediction errors, that is, bias (nonrandom error) and 
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Fig. 1. Schematic illustrations of experimental setting (a). The actual moving object 
was a bird from a popular smartphone game (Angry Birds; Rovio Entertainment, 
2009), here depicted as a gray circle. The object moved for varying durations (vis-
ible dur.) before it disappeared behind the occluder (darker gray bar). Participants 
responded when they thought that the object had arrived at the target location 
(lighter gray bar). The actual target arrival time (occluded dur.) also varied from 
trial to trial. The visible and occluded durations were determined by sampling the 
distance and speed from uniform distributions (see Method). An example eye-
movement trace from one participant (b). Darker and lighter vertical dashed lines 
indicate occluder onset and the actual target arrival time, respectively. Horizontal 
eye position is shown in the left panel. Each dot is an eye-movement sample, and 
the color reflects the classification according to our analysis (see Method). Eye-
velocity trace is shown in the right panel, with saccade removed. Occl. = occlusion; 
Est. = estimated.
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variability (random error) in each participant’s behav-
ioral key-press responses. Given the proposals of pre-
diction in people with ASD, we hypothesized worse 
prediction performance (i.e., larger bias and/or greater 
intraindividual variability in behavioral responses) in 
this population. Such impairment should be more 
prominent at longer occluded durations in which there 
is greater prediction demand.

Second, we investigated whether the prediction per-
formance of people with ASD is related to atypicalities 
in the use of relevant information that are known to 
affect motion prediction: (a) central-tendency bias and 
(b) smooth-pursuit eye movements. Specifically, we 
examined whether individuals with ASD learn and inte-
grate the statistics of past hitting time (i.e., occluded 
duration) into their predictions. This effect would mani-
fest itself as a progressive development of central-
tendency bias in which their behavioral responses are 
biased toward the mean of the distribution throughout 
the experiment (Kwon & Knill, 2013). For smooth-
pursuit eye movements, we tested whether individuals 
with ASD take advantage of smooth pursuit in making 
predictions. Past studies have shown that in typical 
populations, prediction performance is better when 
participants visually pursue a moving object (vs. when 
they fixate; Spering et al., 2011, 2013). Moreover, these 
studies have also observed that as stimulus presentation 
(visible duration) becomes longer, both the smooth-
pursuit quality and prediction-performance increases, 
suggesting that participants benefit from smooth pursuit 
in making motion predictions. Given this finding, we 
examined the integrity of such a relationship between 
smooth pursuit and prediction performance in people 
with ASD across visible durations. Together, these anal-
yses allowed us to better parse out the prediction errors 
driven by different sources and gain further insights on 
possible differential use of relevant cues for motion 
prediction in people with ASD.

Method

Participants

Twenty-six children and adolescents (age range = 9–17 
years) with ASD (25 male) and 20 TD control partici-
pants (18 male) were included in the study. Participants 
were recruited if they were in this age range with IQ 
greater than 80. Exclusion criteria for both groups 
included uncorrected vision (screened over the phone 
and confirmed at the first lab visit), diagnosis of a neu-
rological disorder or injury, or injuries affecting eye 
movements. TD participants were further excluded if 
they had received other mental health (e.g., attention-
deficit/hyperactivity disorder, depression, anxiety) or 

learning/behavioral diagnoses or if they had a first-
degree relative with ASD. Participants recruited for the 
ASD group were required to have a previous clinical 
diagnosis of ASD.

We confirmed or ruled out an ASD diagnosis at the 
research visit with a combination of the Autism Diagnostic 
Observation Schedule (ADOS; Lord et  al., 1999) and 
either the Autism Diagnostic Interview–Revised (ADI-R; 
Rutter et al., 2003a) with parents of participants with 
ASD or the Social Communication Questionnaire (SCQ; 
Rutter et al., 2003b) with parents of TD participants. An 
examiner trained to establish research reliability accord-
ing to the authors’ guidelines administered the ADOS 
and ADI-R, and a licensed clinical psychologist made 
final diagnostic decisions. In a subset of participants 
with ASD (n = 19), we also collected a 20-item parent-
report measure of symptoms of inattention and impul-
sivity, the Swanson, Nolan, and Pelham Rating Scale IV 
(SNAP-IV; Bussing et al., 2008). IQ was measured by 
abbreviated versions of the fourth edition of the 
Wechsler Intelligence Scale for Children (Wechsler, 
2003) or the fourth edition of the Wechsler Adult Intel-
ligence Scale (Wechsler, 2008), selected according to 
participant age.

The groups were matched on both age (ASD group: 
M = 13.3, SD = 2.0; TD group: M = 13.6, SD = 2.3), t(44) = 
0.46, p = .65, and full-scale IQ (ASD group: M = 106.1, 
SD = 16.7; TD group: M = 113.5, SD = 14.6), t(44) = 1.6, 
p = .12. The mean ADOS severity score was 6.85 (SD = 
1.41) for participants with ASD and 1.45 (SD = 0.89) for 
TD participants. Parents reported on their child’s race/
ethnicity and annual household income. Eighty-seven 
percent of participants identified as White (TD group = 
18; ASD group = 22), and 13% of participants identified 
as more than one race (TD group = 2; ASD group = 4). 
Annual household income was distributed as follows: 
13%, less than $50,000 (ASD group = 5); 13%, $50,000 
to $75,000 (TD group = 4; ASD group = 2); 26%, $75,001 
to $100,000 (TD group = 6; ASD group = 6); 32.6%, 
$100,001 to $200,000 (TD group = 6; ASD group = 9); and 
4.3%, more than $200,000 (TD group = 1; ASD group = 
1). Income information was not reported for five par-
ticipants (ASD group = 2; TD group = 3). Participants 
with ASD were generally high functioning (full-scale 
IQ > 80 for all but one participant), and all had fluent 
and complex speech. Several participants were excluded 
from eye-tracking analyses because of calibration difficul-
ties with individuals wearing glasses (ASD group = 5; TD 
group = 1) or because less than 15% of trials were deemed 
usable (ASD group = 3; TD group = 1; for details, see 
Eye-Movement Analysis). Thus, the sample for all eye-
movement analyses consisted of 18 participants with 
ASD and 18 TD control participants. This subsample 
was also matched on age, t(34) = −0.25, p = .81, and 



Atypical Visual Motion Prediction 5

full-scale IQ, t(34) = −1.07, p = .29. The mean ADOS 
severity score for this subset of participants with ASD 
was 6.61.

All participants had normal or corrected-to-normal 
visual acuity (20/40) as assessed with the Snellen eye 
chart. Parents gave written informed consent, and par-
ticipants gave assent. All participants were paid for par-
ticipation. Procedures were approved by the Research 
Subjects Review Board at the University of Rochester in 
accordance with the Declaration of Helsinki.

Apparatus

Stimuli were created in MATLAB (The MathWorks, 
Natick, MA) and Psychophysics Toolbox (Brainard, 
1997; Pelli, 1997) and were shown on a customized 
linear DLP projector (DepthQ WXGA 360; Lightspeed 
Design, Bellevue, WA) at 1,280 × 720-pixel resolution. 
The projector presented gray-scale images at a frame 
rate of 120 Hz. Viewing distance was 135 cm, and each 
pixel subtended 2 arcmin of visual angle. Eye position 
was recorded using a desk-mounted video-based eye 
tracker (Eyelink 1000; SR Research, Ottawa, ON, Can-
ada) at a sampling rate of 120 Hz, matching the frame 
rate of our display. Recording was binocular, but the 
data from only one eye (selected according to which 
eye had the smaller overall standard deviation in eye 
velocity on a given trial) were analyzed. We recorded 
eye position from 250 ms before the onset of stimulus 
motion until participants’ response. Calibration was 
performed at the beginning of each block. A chin rest 
was used to support a still seated position, and an 
experimenter was in the experiment room with partici-
pants to encourage on-task behavior. An interactive 
visual schedule, in which participants marked the com-
pletion of each block, was used to facilitate progress 
and maintain motivation. Subjectively, we observed a 
high degree of participant motivation throughout the 
experiment. We speculate that this was due in part to 
the game-like task design of our experiment.

Stimuli, task, and experimental design

The stimulus was a moving bird (2 × 2°) from a popular 
mobile game, Angry Birds (Rovio Entertainment, 2009) 
presented on a gray background (Fig. 1a). The initial 
position of the stimulus was always at the left-most side 
of the screen, and the moving direction was always left 
to right. The occluder was a long rectangle (dark gray) 
with 5° height that extended to the right-most side of 
the screen. Within the occluder, a bar (light gray; 1° 
width and same height as the occluder) was placed to 
indicate the target location.

We manipulated the main variables of our study—
visible and occluded durations—by independently and 

randomly sampling the stimulus speed, visible distance, 
and occluded distance (i.e., target location). Across tri-
als, speed and visible distance were randomly sampled 
from a uniform distribution (speed: 10°–20°/s; visible 
distance: 8°–18°). For each trial, the stimulus moved at 
a constant speed and fixed distance before it disap-
peared behind an occluder. Together, this resulted in a 
distribution of visible durations that ranged between 
0.4 s and 1.8 s. The occluded distance was randomly 
sampled from a uniform distribution between 0.5° and 
20°, yielding a range of occluded durations between 
0.025 s and 2 s.

Each trial began with a dynamic circle (Foss-Feig 
et al., 2013) that appeared at the initial stimulus posi-
tion and then shrank in size (from 0.63° to 0.1° in radius 
over 250 ms) until it disappeared. After 250 ms, the 
stimulus appeared on the screen, moved horizontally 
rightward, and disappeared behind the occluder. Par-
ticipants were instructed to press the space bar when 
they thought the stimulus had arrived at the target loca-
tion. A trial was counted as correct if the distance 
between participants’ response (i.e., as indicated by the 
location of the stimulus center when the space bar was 
pressed) and the designated target location was less 
than 1.5°. On these correct trials, the bird visually 
bounced by increasing and decreasing its size repeti-
tively over 1 s, paired with a sound. When participants 
were incorrect, the position of the bird at the time of 
participants’ button press was shown for 1 s as visual 
feedback. Note that correct and incorrect trials were 
used only for feedback; participants’ keyboard 
responses were recorded and analyzed as a continuous 
measure (i.e., when they pressed the space bar in rela-
tion to the actual arrival time at the target location).

To evaluate the central-tendency bias and ensure that 
the statistical properties of the stimulus distributions 
are appropriately learned (Berniker et al., 2010; Kwon 
& Knill, 2013), we asked participants to complete 400 
trials total in a single session, distributed across four 
experimental blocks (100 trials each). Each block took 
approximately 7 to 8 min, and breaks were given in 
between.

Prediction-performance analysis

We report two types of error in prediction performance: 
bias and variability. Both absolute bias (responded time 
minus actual time) and relative bias (responded time 
divided by actual time) were calculated, and variability 
was estimated by taking the standard deviation of abso-
lute and relative biases. The use of relative bias allowed 
us to average the data across trials and conditions when 
needed. Given that our stimulus (a bird) was inherently 
asymmetric in visual features, the centroid of the bird 
was used as its position in obtaining these bias and 
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variability measures (for the centroid extraction method, 
see Section S1 in the Supplemental Material available 
online).

We discarded the trials in which the target location 
was too close to the starting point of the occluder such 
that participants could make a response while the stimu-
lus was still visible (i.e., no prediction required; occluded 
distance < 1°; < 2.4% of trials). We also excluded outlier 
trials that were greater than 3 SD in relative bias (< 3% 
of trials). Note that trials excluded for these reasons 
were also excluded in all eye-movement analyses. When 
analyzing prediction performance alone, we used an 
average of 393 trials per participant (out of 400).

To examine the changes in overall prediction per-
formance with increasing prediction demand, we 
binned the trials into 10 or five bins (depending on the 
analysis) according to occluded duration such that each 
bin contained an approximately equal number of trials. 
Absolute bias and variability in participants’ key-press 
responses were calculated for each bin.

Analyses of the development  
of central-tendency bias

To evaluate the possible differences in the central-
tendency bias between the ASD and TD groups, we 
first compared the pattern of prediction bias in Blocks 
1 and 4 across occluded durations. This step was based 
on the assumption that we would observe the largest 
difference in response bias in these two blocks if par-
ticipants had learned the stimulus distribution through-
out the experiment. We also examined the development 
of prediction bias in the bins with the shortest and the 
longest occluded durations (i.e., in which the biases 
typically develop in the opposite directions—an indica-
tion that the responses are biased toward or away from 
the mean). For this, we averaged the prediction bias 
every 20 trials in the two occluded-duration bins for 
each participant and performed a linear regression 
analysis to determine the slope of the trajectory.

Eye-movement analysis

Eye-movement data were analyzed offline. All trials 
were visually inspected, and the trials with eye blinks 
were removed from the analysis. On average, this elimi-
nated 25.07% of the trials in the ASD group and 23.19% 
in the TD group, t(34) = 0.29, p = .77.

The primary goal of the eye-movement analysis was 
to obtain pursuit gain that characterizes smooth-pursuit 
quality for each participant and condition. To do this, 
we classified the eye-movement samples into different 
eye-movement types (saccades, smooth pursuits, and 
fixations; Fig. 1b, left). Detailed steps are explained in 

Section S2 in the Supplemental Material. In brief, sac-
cades were first detected from the eye velocity traces 
and removed (Fig. 1b, right). The removed velocity 
samples were linearly interpolated. From these saccade-
removed velocity traces, smooth pursuit was classified 
(vs. fixations) by (a) detecting the pursuit onset using 
a piecewise linear regression and (b) applying a posi-
tion dispersion criteria (Komogortsev & Karpov, 2013). 
A trial was counted as a “pursuit trial” if the pursuit 
onset was detected and pursuit lasted more than five 
samples as determined by dispersion.

For the eye-movement analyses, we used only the 
pursuit trials in which pursuit was detected. Although 
we did not provide specific instructions for eye move-
ments in the task, on average, we were able to detect 
smooth-pursuit behavior in a large number of the trials 
in both groups (ASD group: 3.85 times greater number 
of pursuit than no pursuit trials; TD group: 5.01 times 
greater), t(34) = −0.89, p = .38. This suggests that smooth 
pursuit is a natural strategy to use in this task. On aver-
age, smooth pursuit was present in 223 trials per par-
ticipant in the ASD group and 217 trials in the TD 
group. The number of removed eye-movement trials 
was not different between groups, F(1, 34) = 0.07, p = 
.80, or across blocks, F(2.5, 85.08) = 2.49, p = .08, and 
there was no significant interaction between block and 
group, F(2.5, 85.08) = 1.62, p = .20.

To characterize the quality of smooth pursuit, we 
calculated the pursuit gain by dividing the eye velocity 
by the object velocity—a measure that accounts for 
differences in object speed. We separately calculated 
the gain across three different periods of smooth pur-
suit: the open-loop period, the closed-loop period, and 
the occluded period. The open-loop period is the first 
100 ms to 150 ms after pursuit onset when the eye 
velocity begins to increase, driven by the feedforward 
signals from the retina (Lisberger, 2015; Lisberger & 
Medina, 2015). During the closed-loop period, the eye 
velocity reaches a steady state closely following the 
object motion. We defined the open-loop period to be 
the first 100 ms after the pursuit onset, and the closed-
loop period was from 200 ms after the pursuit onset 
until the occluder onset. We also ran the analyses using 
a more constrained definition of the closed-loop period 
(200–400 ms after the pursuit onset), and the results 
did not change. The occluded period (time from 
occluder onset to participants’ response) was included 
to probe potential differences in the strategies that 
people with ASD may use for prediction in the absence 
of visual stimulation. The peak pursuit gain, time to 
peak, and the gain at the end of the closed-loop period 
were also obtained to better understand possible group 
differences in the temporal dynamics of the smooth-
pursuit behavior. Additional analyses indicated that our 
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paradigm and measurements yielded data that are of 
sufficient quality (see Section S3 in the Supplemental 
Material).

Testing the relationship between 
prediction errors and smooth pursuit

To examine the relationship between smooth pursuit 
and prediction performance, we tested whether the 
quality of pursuit, when present, was related to predic-
tion performance. To test this, we exploited a well-
established finding in typical populations that both the 
smooth-pursuit quality during the closed-loop period 
and prediction performance become better with increas-
ing visible duration (Spering et al., 2011, 2013). Thus, 
we divided our data into shorter and longer visible 
duration trials using a median split (median = 0.86 s) 
and separately estimated the closed-loop pursuit gain 
in these two visible duration conditions (shorter and 
longer). Note that this analysis is analogous to experi-
mentally inducing pursuit gain changes in a participant 
by manipulating stimulus duration (Spering et al., 2011).

We then examined the relationship between pursuit 
quality and prediction performance in three ways. We 
first assessed whether smooth-pursuit quality, on aver-
age, becomes better with increasing visible duration in 
both groups. To do this, we tested the changes in 
closed-loop pursuit gain in the shorter and longer vis-
ible duration conditions. Next, we examined whether 
pursuit gain is a significant predictor of prediction per-
formance across visible durations. For this, we fit linear 
mixed-effects models to prediction performance from 
both the shorter and longer visible duration conditions, 
with the pursuit gain as a fixed effect and participant 
as a random effect (intercept). We fit the models sepa-
rately for each group and prediction error (bias and 
variability), yielding four models in total. All of these 
models had lower Bayesian information criterion values 
(see Table S1 in the Supplemental Material) compared 
with the ones that also included visible duration as a 
predictor. Finally, we investigated whether there is a 
relationship between pursuit quality and prediction 
performance within an individual by correlating closed-
loop pursuit gain and prediction bias on a trial-by-trial 
basis in each participant.

For statistical analyses, we tested the effects of group 
and conditions at the significance level of .05. Hyunh-
Feldt and Bonferroni corrections were used as neces-
sary. Welch’s t test was used for tests involving unequal 
variances. For linear mixed-effects models, p values 
were estimated via t tests using the Satterthwaite 
approximations to degrees of freedom.

Results

Coarse measures of prediction 
performance

To understand the differences in prediction perfor-
mance between the ASD and TD groups, we first ana-
lyzed the data from all experimental blocks together, 
momentarily ignoring temporal dynamics associated 
with the development of the central-tendency bias. 
Here, we calculated the absolute bias (responded time 
minus actual time) and variability (standard deviation 
in prediction bias) in participants’ behavioral responses 
across occluded durations. Across measures of predic-
tion bias and variability, we observed the expected 
relationship between occluded duration and perfor-
mance in both groups (Fig. 2a). Specifically, as occluded 
duration became longer, there was an increasing ten-
dency to respond almost 100 ms earlier than the actual 
hitting time, F(2.74, 120.7) = 37.83, p < .001 (Fig. 2a, left), 
and increased response variability, F(3.98, 175.22) = 
235.87, p < .001 (Fig. 2a, right). There were no group 
differences in either of the measures (all ps > .11). 
Although we did observe a tendency for participants 
with ASD to respond earlier than TD participants at the 
bin with the longest occluded duration, this interaction 
did not reach statistical significance, F(2.74, 120.7) = 
2.3, p = .086. Overall, these results demonstrate that 
longer occluded durations are similarly associated with 
increased prediction demand in both groups.

Development of central-tendency  
bias across blocks

Although the above results may suggest that people 
with ASD are not impaired at the level of motion-
prediction performance, an investigation of how indi-
viduals make predictions over time revealed notable 
differences. Specifically, we conducted a planned analy-
sis on the changes in prediction bias between Blocks 
1 and 4, which revealed atypicalities in participants with 
ASD regarding the development of central-tendency 
bias. There was a three-way interaction among group, 
occluded duration, and block, F(2.95, 129.99) = 6.60,  
p < .001. To better understand this, we separately ana-
lyzed the data in each group. In the TD group (Fig. 2b, 
right), we found a significant interaction between block 
and occluded duration, F(3.2, 60.76) = 9.06, p < .001. 
In Block 1, there was an overall small early bias (i.e., 
tendency to respond earlier than the actual target arrival 
time) that was similar in magnitude across occluded 
durations. In other words, initially, TD individuals 
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treated different occluded durations similarly—an 
expected result given that there is little past experience 
to affect predictive behavior at this early stage. However, 
by Block 4, the pattern changed. At longer occluded 
durations, the early bias strengthened, whereas at 
shorter occluded durations, the early bias weakened 
and turned into a late bias (responding later than the 
target arrival time). This pattern in the TD group is 
consistent with the central-tendency bias reported in 
previous studies ( Jazayeri & Shadlen, 2010; Kwon & 
Knill, 2013), in which the responses are biased toward 
the mean of the learned stimulus distribution. In fact, 
the pattern of the prediction bias observed in Block 4 
closely resembles that generated by an ideal observer 
model (see Section S4 in the Supplemental Material), 
suggesting an optimal behavior in the TD group.

On the other hand, in the ASD group, we did not 
find a typical progression toward a central-tendency 
bias. Here, whereas participants with ASD showed a 
pattern similar to TD participants in terms of central-
tendency bias in the end, the strong early bias at longer 
occluded durations was already present in Block 1 (Fig. 
2b, left). There was a main effect of occluded duration 
in the ASD group, F(1.77, 44.29) = 25.92, p < .001, and 
the largest early bias appeared at the bin with the lon-
gest occluded duration. Moreover, we found a main 
effect of block, F(1, 25) = 17.63, p < .001, in which the 
early bias overall became weaker in Block 4. Contrary 
to the pattern found in the TD group, the interaction 
between block and occluded duration was not signifi-
cant in the ASD group, F(2.77, 69.66) = 0.84, p = .47. 
These results suggest that, unlike in the TD group, the 
early bias in the bin with longer occluded duration was 
present from the first block of the experiment in the 
ASD group.

One possible explanation for the presence of such 
early bias in participants with ASD could be that they 
learned the stimulus statistics substantially faster than 
TD participants. However, the analysis of how the pre-
diction bias developed across trials (Fig. 2c) revealed 
a pattern that cannot be fully explained by this account. 
In the TD group (Fig. 2c, right), there was a clear 
central-tendency bias, with a progressive development 
of the biases in the opposite directions for the shorter 
and longer occluded durations (corresponding to the 
first and last bins in Fig. 2b, respectively); first bin: 
slope = .000059 (5.9 ms increase per 100 trials), t(18) = 
3.35, p = .004; last bin: slope = −.00014 (−14 ms decrease 
per 100 trials), t(18) = −2.68, p = .02. Consistent results 
were found when using the second occluded duration 
bin, in which a late bias eventually appeared in Block 
4. These indicate that TD participants, over time, 
learned the stimulus statistics and integrated this knowl-
edge into their predictions, resulting in stronger biases 

over time. Such strategy is thought to be optimal 
because it can help reduce the uncertainty in sensory 
estimates ( Jazayeri & Shadlen, 2010).

In contrast, in the ASD group, the early bias was 
present at the very beginning and was numerically the 
strongest in as early as the first 20 trials in both the first 
and the last occluded-duration bins (Fig. 2c, left). This 
is an insufficient number of samples to learn statistical 
properties of a distribution that they had never encoun-
tered before (Berniker et al., 2010; Kwon & Knill, 2013). 
Moreover, the magnitude of the bias did not remain the 
same; it changed in the same direction in the two 
occluded-duration bins, weakening over the course of 
the experiment; first bin: slope = .00005 (5 ms increase 
per 100 trials), t(18) = 3.26, p = .004; last bin: slope = 
.00014 (14 ms increase per 100 trials), t(18) = 2.24, p = 
.04. These differences in the pattern of how the biases 
developed over time suggest that the prediction bias in 
the ASD group, at least initially in the experiment, likely 
was affected by a source that is different from the one 
used by TD individuals (see Discussion). Additional 
analyses ruled out the possibility that such atypical 
patterns of prediction bias in the ASD group were a 
result of impulsivity or subjective difficulty (or motiva-
tion) across blocks (see Section S5 in the Supplemental 
Material).

Better smooth-pursuit quality during 
occluded period in ASD

To characterize the quality of smooth pursuit, we first 
separately analyzed the pursuit gain in each group. The 
eye velocity during pursuit is typically slower than the 
object such that the resulting pursuit gain yields a num-
ber less than 1. In other words, a pursuit gain closer to 
1 reflects faster and better pursuit, more similar to the 
object velocity.

The mean pursuit gain (eye velocity divided by 
object velocity, saccades removed) over time for each 
group is shown in Figure 3a. In both groups, the mean 
pursuit gain increased rapidly after the onset of the 
object motion, reached a steady state, and decreased 
as the object became occluded. Although the overall 
shape of the pursuit gain pattern over time was similar 
between the two groups, we observed a difference in 
the timing of pursuit onset; participants with ASD were 
slower in initiating the smooth pursuit, t(34) = 2.8, p = 
.008 (ASD group: M = 0.174 s, SD = 0.016; TD group: 
M = 0.156 s, SD = 0.022). In addition, in the ASD group, 
the time when the pursuit gain reached the peak was 
slower than that in the TD group, t(34) = 3.23, p = .003 
(ASD group: M = 0.645 s, SD = 0.041; TD group: M = 
0.594 s, SD = 0.054), although the two groups were not 
different in terms of the magnitude of pursuit gain at 
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the peak (calculated by averaging five samples around 
a time point), t(34) = 1.11, p = .28 (ASD group: M = 
1.24, SD = 0.18; TD group: M = 1.17, SD = 0.21), or at 
the time before the stimulus occlusion (average of five 
samples before the occluder onset), t(34) = 1.6, p = .12 
(ASD group: M = 0.56, SD = 0.25; TD group: M = 0.44, 
SD = 0.19).

To better characterize the differences in smooth pur-
suit over time, we compared the mean pursuit gain in 
three different time periods (open-loop period, closed-
loop period, and occluded period; see Eye-Movement 
Analysis) between the ASD and TD groups (Fig. 3b). 
As expected, we observed a significant main effect of 
pursuit period, F(2, 68) = 90.37, p < .001, in which the 
pursuit gain was the largest during the closed-loop 
period. Note that there was a significant interaction 
between group and pursuit period, F(2, 68) = 12.22,  
p < .001. Post hoc t tests revealed that, compared with 
the TD group, pursuit gain was smaller in the ASD 
group during the open-loop period, t(34) = −2.22, p = 
.03, but larger during the occluded period, t(23.26) = 
2.29, p = .03. The two groups showed similar pursuit 
gain during the closed-loop period, t(34) = 0.55, p = 
.59. The smaller open-loop gain in the participants with 
ASD appears to be related to their slower pursuit onset; 
there was a strong negative correlation between open-
loop gain and pursuit onset in both of the groups (ASD 
group: r = −.87, p < .001; TD group: r = −.94, p < .001), 

implying that participants who were slower at initiating 
the pursuit also had overall worse smooth-pursuit qual-
ity during the open-loop period.

An unexpected aspect of the results was significantly 
better smooth pursuit in the ASD group during stimulus 
occlusion. There was one participant with ASD who 
maintained unusually high pursuit velocity during both 
the closed-loop period and the occluded period (Fig. 
3a, topmost pale blue line). Even when this participant 
was excluded, the results remained statistically identical 
(see Section S6 in the Supplemental Material). One 
possible account for increased occluded gain in the 
ASD group is that similar to the open-loop period, 
participants’ occluded pursuit gain may have been 
affected by slower pursuit onset. That is, to catch up 
with the stimulus, slower initiation of smooth pursuit 
in the ASD group may have resulted in faster smooth 
pursuit, leading to larger pursuit gain during the 
occluded period. However, pursuit onset, in fact, was 
negatively related to occluded pursuit gain in both the 
ASD group (r = −.574, p = .01) and the TD group (r = 
−.575, p = .01). In other words, slower pursuit onset 
was linked to worse smooth pursuit during the occluded 
period. This indicates that better smooth pursuit during 
the occluded period in the participants with ASD was 
not a compensation for their slower pursuit onset.

Instead, better pursuit during the occluded period 
in the ASD group seems to be closely related to that in 
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the closed-loop period (Fig. 3c). In both groups, we 
found a positive correlation in pursuit gain between 
the two periods (ASD group: r = .81, p < .001; TD 
group: r = .52, p = .03), suggesting that participants 
who followed the object better with their eyes during 
the closed-loop period also had higher pursuit gain 
during stimulus occlusion. In fact, the group difference 
in occluded-period gain was not significant when con-
trolling for the gain at the end of the closed-loop 
period, F(1, 33) = 2.56, p = .12, although it was still 
significant when controlling for the peak closed-loop 
gain, F(1, 33) = 4.31, p = .046. These results indicate 
that the quality of pursuit just before the stimulus dis-
appeared was likely carried through to when the stimu-
lus was occluded. The two groups were not different 
in the number and cumulative amplitude of saccades 
in all periods (all ps > .10). Together with the differ-
ences in the development of prediction bias in ASD, 
these results point to a possibility that there may have 
been differences in how participants with ASD pre-
dicted object motion compared with TD participants, 
and differential use of eye-movement signals was a 
possible candidate. In the next section, we explore this 
possibility.

Smooth pursuit quality is differently 
related to prediction performance in ASD

Motion-prediction performance typically benefits from 
smooth-pursuit eye movements (Spering et  al., 2011, 
2013): As pursuit quality improves with longer visible 
duration, prediction performance also improves. Devia-
tions from this link would suggest an atypical relation-
ship between smooth pursuit and prediction performance. 
Here, we specifically examine the hypothesis that pre-
diction performance is differently related to smooth-
pursuit quality in people with ASD. If smooth pursuit 
in people with ASD is related to prediction, then we 
should observe an atypical link between prediction 
performance and pursuit gain in the closed-loop or 
occluded periods (i.e., when the eye velocity is likely 
to be influenced by both the feedforward and feedback 
signals). To test this, we investigated the changes in 
closed-loop pursuit gain and prediction performance 
across visible durations (as determined according to 
the median of 0.86 s; see Testing the Relationship 
Between Prediction Errors and Smooth Pursuit).

First, we replicated the previous finding (Spering 
et al., 2011) that pursuit gain during the closed-loop 
period is greater for longer visible durations than 
shorter visible durations, F(1, 34) = 25.51, p < .001 (Fig. 
4a). There was no significant interaction between vis-
ible duration and group, F(1, 34) = 0.37, p = .55, sug-
gesting that the smooth pursuit in both groups became 

similarly better when the stimulus was visible for a 
longer period of time.

However, linear mixed effects analyses revealed a 
relationship between prediction performance and 
smooth pursuit in the ASD group that was seemingly 
different from that observed in the TD group. Here, we 
tested whether closed-loop pursuit gain is a significant 
predictor of prediction performance in each group 
across visible durations (Figs. 4b and 4c). In the TD 
group, consistent with previous reports in typical popu-
lations (Spering et al., 2011, 2013), we found that better 
pursuit was associated with improved prediction per-
formance. Specifically, pursuit gain was negatively 
related to prediction variability (Fig. 4b, right; gain:  
β = −0.12, SE = 0.03), t(33.93) = −4.27, p < .001, sug-
gesting that better pursuit was linked to more consistent 
responses in the TD group. On the other hand, there 
was no significant relationship between pursuit gain 
and prediction bias in the TD group (Fig. 4c, right; gain: 
β = 0.004, SE = 0.03), t(19.89) = 0.14, p = .89. In the 
ASD group, we observed the opposite pattern. Pursuit 
gain was not significantly related to prediction variabil-
ity (Fig. 4b, left; gain: β = 0.04, SE = 0.03), t(24.9) = 1.45, 
p = .16, but was negatively related to prediction bias, 
which was marginally significant (Fig. 4c, left; gain:  
β = −0.08, SE = 0.04), t(18.5) = −2.09, p = .051. This sug-
gests that better smooth pursuit was related to increased 
tendency to respond early in participants with ASD. 
Thus, whereas smooth pursuit became better with lon-
ger visible duration in both groups, the enhancement 
in pursuit quality was associated with different types of 
prediction errors (variability vs. bias) in different direc-
tions (better vs. worse prediction). Similar results were 
observed when using occluded pursuit gain (see Section 
S7 in the Supplemental Material).

We also tested whether we can find a consistent 
pattern—negative relationship between pursuit gain 
and prediction bias in people with ASD—within an 
individual by performing a trial-by-trial correlation 
between prediction bias and closed-loop pursuit gain 
in each participant. These trial-by-trial correlations tend 
to be low (because many factors influence task perfor-
mance), but they can reveal the presence of shared 
mechanisms (Glasser & Tadin, 2014; Stone & Krauzlis, 
2003). Specifically, for each participant, we obtained 
the correlation coefficient (r) between closed-loop pur-
suit gain and relative prediction bias and tested whether 
these correlation coefficients were statistically different 
from zero in each group. Consistent with our analyses 
across visible durations (Fig. 4c), in the ASD group, we 
indeed found a small but significant negative relation-
ship between closed-loop pursuit gain and relative pre-
diction bias (mean r = −.09, SD = .092), mean r 
statistically different from zero, t(17) = −4.14, p < .001. 
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In the TD group, we did not find such a relationship 
(mean r = −.002, SD = .11), mean r not statistically dif-
ferent from zero, t(17) = −0.1, p = .92. We also com-
pared whether the mean correlation coefficients were 
significantly different between the two groups. The 

results showed that the mean r in the ASD group was 
significantly smaller than that in the TD group, t(34) = 
−2.59, p = .01. When using occluded-period pursuit 
gain, we again found a negative trial-by-trial correlation 
in participants with ASD (mean r = −.15, SD = .12), 
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mean r significantly different from zero, t(17) = −5.21, 
p < .001. These results together show an atypical pat-
tern in the ASD group in which better smooth pursuit 
may have been linked to earlier prediction bias. Note 
that the use of only the “pursuit trials” did not bias our 
results (see Section S8 in the Supplemental Material).

Discussion

The present study reveals atypical motion-prediction 
abilities in people with ASD. All participants, on aver-
age, exhibited a tendency to have higher response vari-
ability as the occlusion duration became longer and 
showed evidence for the central-tendency bias (i.e., late 
responses for short occlusion durations and early 
responses for long occlusion durations). However, fine-
grained analyses revealed that in the TD group, the 
central-tendency bias developed gradually over the 
course of the experiment. This is a key feature of 
central-tendency behavior that reflects accumulating 
knowledge of the stimulus statistics and is considered 
to be an adaptive predictive behavior ( Jazayeri & 
Shadlen, 2010; see Section S4 in the Supplemental Mate-
rial). In contrast, the ASD group did not show evidence 
for a central-tendency bias that grows with experience. 
The two groups also differed in how eye movements 
were related to prediction behavior. In the ASD group, 
the changes in the prediction bias were related to the 
quality of smooth pursuit. Specifically, better smooth 
pursuit during the closed-loop period was counterin-
tuitively related to worse prediction (i.e., larger early 
bias), whereas in the TD group, it was linked to better 
prediction performance (i.e., reduced variability). Over-
all, these results provide evidence for differences in 
how individuals with ASD make predictions on the 
basis of available information. In particular, the findings 
suggest a possible deficit in people with ASD regarding 
learning or integrating the prior knowledge on the sta-
tistics of the environment and an atypical use of extra-
retinal signals in predicting visual motion.

Together, our findings show that despite seemingly 
similar patterns of performance on the surface, motion 
prediction appears to be influenced by distinct mecha-
nisms in the ASD and TD groups. The results are seem-
ingly inconsistent with previous studies that tested 
motion-prediction abilities in people with ASD. The 
discrepancy may be driven by differences in paradigm 
and analysis approach, highlighting the importance of 
isolating individual factors that contribute to motion-
prediction abilities. Using a driving simulation, Sheppard 
et  al. (2016) found a deficit in people with ASD in 
predicting the time to arrival for the other car only 
when the observer motion was in a forward trajectory 
and not in a curved trajectory. Here, the results may 
have been affected by how individuals interpret the 

optic flow generated by the simulated observer motion 
(Sheppard et al., 2016) rather than impairments in pre-
diction ability per se. Using a similar visual extrapola-
tion paradigm as ours with three occlusion durations 
(1 s, 2 s, and 4 s), Tewolde et al. (2018) found no group 
differences in prediction variability in participants with 
ASD. They also reported a similar pattern of prediction 
bias in both ASD and TD groups, and there was a ten-
dency to respond late at shorter occlusion duration and 
to respond early at longer occlusion duration. Note that 
this pattern was observed from an aggregate data across 
all trials, and it is unknown whether there was a differ-
ence in the development of bias over time, as was the 
case in our data.

We also report a novel finding that smooth pursuit 
during stimulus occlusion was significantly better in 
participants with ASD. The occluded pursuit gain was 
correlated with that in the closed-loop period, suggest-
ing that participants with ASD may have sustained their 
pursuit better throughout occlusion. Better smooth pur-
suit in participants with ASD, however, came at a cost; 
although it was linked to better performance (i.e., 
reduced variability) in TD participants, it was associated 
with worse performance (i.e., larger bias) in partici-
pants with ASD. This counterintuitive result provides 
insight into potential underlying mechanisms that may 
be atypical in people with ASD. We first consider the 
possibility that this finding reflects a general impair-
ment in the saccadic eye-movement system in people 
with ASD. In the absence of visual stimulation, the 
visual system compensates for the decrease in pursuit 
velocity with predictive saccades (Orban de Xivry et al., 
2006, 2008). This compensation ability becomes better 
throughout development (Ego, Yüksel, et al., 2016). In 
people with ASD, previous studies have shown less 
precise saccades ( Johnson et al., 2012; Schmitt et al., 
2014) and difficulties adapting to saccadic errors 
(Freedman & Foxe, 2018). Thus, it is possible that better 
smooth pursuit in people with ASD could be a by-
product of a deficit in predictive catch-up saccades, a 
deficit that may, in turn, worsen prediction perfor-
mance. However, we do not find this explanation to be 
likely. We did not find any group differences in any of 
our saccade measures. Furthermore, ASD is associated 
with an intact ability to alternate between smooth pur-
suit and saccades in the absence of visual stimulation 
(Ego, Bonhomme, et al., 2016).

Another possibility considers an atypical influence of 
extraretinal signals for motion prediction in people with 
ASD. A growing number of studies imply that the per-
ceptual system can rely on both retinal and extraretinal 
signals related to eye movements when extrapolating 
motion trajectories (Bosco et al., 2015; Gauthier et al., 
2007; Spering et al., 2011). Such processing is proposed 
to be mediated by a network of areas (Lisberger, 2009; 
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Ono, 2015), including the medial superior temporal 
area, supplementary eye field, and cerebellum, where 
neurons respond to visual motion and maintain their 
response during occlusion. Extraretinal signals can be 
particularly useful during occlusion when the retinal 
motion associated with the object is absent. Here, it is 
possible that such signals may have been used and 
interpreted differently by the two groups, resulting in 
different types of prediction errors. For instance, in the 
TD group, greater pursuit gain might contribute to the 
certainty in sensory signals about object motion, affect-
ing the prediction variability (random error). On the 
other hand, in the ASD group, pursuit signals may have 
been linked with the nonrandom errors, such as in the 
estimation of the object speed. Given that time is nega-
tively related to speed (time = distance/speed), faster 
estimated object motion from pursuit would have 
resulted in shorter estimated time to target location, and 
thus earlier bias in the ASD group that deteriorates the 
performance (note that smooth-pursuit gain is typically 
smaller than 1 such that better pursuit is achieved by 
faster eye velocity). Although speculative, such an 
account may provide an explanation for why an earlier 
prediction bias is counterintuitively linked with better 
smooth pursuit in people with ASD.

Our finding of atypical development of central-
tendency bias in the ASD group may be consistent with 
a proposal that postulates less influence of Bayesian 
priors on perceptual experiences in people with ASD 
(Palmer et  al., 2017; Pellicano & Burr, 2012; Van de 
Cruys et al., 2014). The central-tendency bias has been 
suggested to reflect the human brain’s optimal strate-
gies for incorporating prior knowledge into perceptual 
judgments ( Jazayeri & Shadlen, 2010). Thus, the lack 
of this bias in people with ASD may indicate difficulties 
integrating prior knowledge with sensory inputs. How-
ever, this conclusion should be interpreted with cau-
tion. One of the key predictions from this Bayesian 
hypothesis is that because of less precise priors, the 
perceptual estimates in people with ASD should be 
more accurate (i.e., less biased) and truer to the current 
sensory signals. In this context, our finding that the 
responses in the ASD group were still erroneous and 
biased is inconsistent with this hypothesis. Neverthe-
less, the results suggest that prediction performance in 
people with ASD is influenced by a different source of 
bias that is less dependent on accumulating knowledge 
of the stimulus statistics. Whether this is due to indi-
viduals’ deficits in learning this information or in inte-
grating it into percepts warrants further investigation.

An alternative explanation for atypical motion-
prediction abilities in people with ASD may involve 
motion-processing deficits per se in people with ASD. 
It is well documented that individuals with ASD have 

atypicalities in processing motion information (Koh 
et al., 2010; Schauder et al., 2017; Spencer et al., 2000; 
Takarae et al., 2008), which may, in turn, disrupt predic-
tion accuracy in this domain. Our finding that individu-
als with ASD demonstrated lower pursuit gain during 
the open-loop period potentially supports this idea. A 
recent study reported that individuals with ASD require 
longer stimulus durations to perceive motion for smaller 
stimuli (Schauder et al., 2017), similar to our stimulus 
size. This makes it possible that in our prediction task, 
more time was needed for them to initiate the smooth 
pursuit and/or reach a steady state because of decreased 
sensitivity to motion. However, it is difficult to conclude 
that motion-processing deficits alone fully explain our 
results for several reasons. First, we employed longer 
visible durations (well above threshold for both the ASD 
and TD groups), which would have minimized the effects 
of motion sensitivity differences. Second, although we 
found differences in the open-loop pursuit gain, pursuit 
quality was similar between groups during the closed-
loop period. This indicates that once motion is success-
fully detected, the internally generated motion information 
in the ocular motor system for smooth pursuit may be 
intact. Therefore, although we cannot completely rule 
out the influence of decreased motion sensitivity in peo-
ple with ASD on our findings, it is less likely that general 
motion-processing deficits explain our main findings 
regarding motion prediction.

Conclusions

Our study provides evidence for atypical motion-
prediction abilities in people with ASD that may be 
influenced by differential use of relevant information 
in motion prediction. Such findings were uncovered 
using a paradigm that approximates the natural ways 
individuals interact with dynamic objects. The study 
provides empirical support for a recent theory that pro-
poses prediction deficits as a global trait in people with 
ASD. Future studies should examine whether the atypi-
calities we observed in the motion domain reflect a 
broader prediction deficit that can be generalized to 
other complex areas and their potential influence on 
the core behavioral symptoms of ASD.
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