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Visual input is remarkably diverse. Certain sensory inputs are more probable than others, mirroring statistical regularities of the visual
environment. The visual system exploits many of these regularities, resulting, on average, in better inferences about visual stimuli.
However, by incorporating prior knowledge into perceptual decisions, visual processing can also result in perceptions that do not match
sensory inputs. Such perceptual biases can often reveal unique insights into underlying mechanisms and computations. For example, a
prior assumption that objects move slowly can explain a wide range of motion phenomena. The prior on slow speed is usually rationalized
by its match with visual input, which typically includes stationary or slow moving objects. However, this only holds for foveal and
parafoveal stimulation. The visual periphery tends to be exposed to faster motions, which are biased toward centrifugal directions. Thus,
if prior assumptions derive from experience, peripheral motion processing should be biased toward centrifugal speeds. Here, in exper-
iments with human participants, we support this hypothesis and report a novel visual illusion where stationary objects in the visual
periphery are perceived as moving centrifugally, while objects moving as fast as 7°/s toward fovea are perceived as stationary. These
behavioral results were quantitatively explained by a Bayesian observer that has a strong centrifugal prior. This prior is consistent with
both the prevalence of centrifugal motions in the visual periphery and a centrifugal bias of direction tuning in cortical area MT, support-
ing the notion that visual processing mirrors its input statistics.

Introduction
The fundamental function of perceptual systems is to provide
useful, though not necessarily accurate, information about the
environment. The ensuing perceptual experiences abound with
occasions where perception does not match sensory inputs (Ker-
sten et al., 1996; Adams et al., 2004). While these perceptual
“errors” may seem maladaptive, they often reflect sensory pro-
cesses that take into account not only sensory inputs but also our
prior perceptual experiences, offering unique insights into un-
derlying perceptual mechanisms and computations (Kersten et
al., 2004; Knill and Pouget, 2004; Geisler, 2008). This approach
has been successfully applied to visual motion perception, which
often exhibits systematic and sometimes pronounced mispercep-
tions. These misperceptions can be explained in a Bayesian
framework that explicitly incorporates prior knowledge into per-

ceptual decisions. Specifically, a “slow speed prior”—an assump-
tion that an object is more likely to be static than to move fast—
can account for many motion phenomena (Weiss et al., 2002;
Stocker and Simoncelli, 2006; Hedges et al., 2011). For example, a
decrease in apparent speed at low contrast (Thompson, 1982) is
predicted by high uncertainty about stimulus speed at low con-
trast, which increases the influence of the slow speed prior on
motion perception (Stocker and Simoncelli, 2006).

Why is there a prior on slow speed? In general, priors are
believed to come from visual experiences (Adams et al., 2004,
Sotiropoulos et al., 2011). Indeed, fast-moving objects are rela-
tively rare, as the reader can likely ascertain by examining his/her
own environment. Even if the observer is moving, foveal/parafo-
veal motion signals are slow. The same holds when we are visually
pursuing a moving object. However, this is only true for foveal/
parafoveal stimuli. When we are in motion (Warren et al., 2001)
or tracking a moving object (Kowler, 2011), the visual periphery
is exposed to motion. Moreover, because the optic flow is pre-
dominantly expanding, our peripheral experience is biased to-
ward centrifugal motions. This environmental regularity is also
evident in the centrifugal bias of direction tuning in cortical area
MT (Albright, 1989). Thus, if prior assumptions derive from ex-
periences (Dakin et al., 2005; Girshick et al., 2011), the slow speed
prior should not generalize to the visual periphery. Instead, the
prior should shift toward centrifugal speeds. Consequently, we
should be biased toward perceiving peripheral objects as moving
away from fovea. Because the hypothesized prior is asymmetric in
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velocity space, it should also affect station-
ary stimuli. Specifically, it predicts a novel
illusion where stationary stimuli are per-
ceived as moving centrifugally.

To test these predictions, we measured
motion perception biases in the visual pe-
riphery over a range of stimulus dura-
tions. By varying stimulus duration, we
manipulated the spread of the temporal
frequency spectrum (Fig. 1C; Der-
rington and Goddard, 1989). This ma-
nipulation affected uncertainty about
stimulus motion, as confirmed by speed
discrimination measurements. From these
behavioral data we modeled the shape of
the prior distribution, revealing a strong
centrifugal prior. This prior can explain
observed motion perception biases in the
visual periphery, including strong illusory
motion that is seen for briefly presented
stationary stimuli.

Materials and Methods
Participants. Five experienced participants
(mean age, 28; 5 males) took part in experi-
ments. Two are authors R.Z. and D.T., while
the others were naive to the purpose of the
study. All had normal or corrected-to-normal
vision. All procedures complied with institu-
tional guidelines for human subjects.

Apparatus. Stimuli were created in MATLAB
and Psychophysics Toolbox (Brainard, 1997;
Pelli, 1997) and presented on a linearized CRT
monitor (24 inch Sony GDM-FW900, 1024 �
640 resolution, 120 Hz). Viewing was binocu-
lar at 83 cm (yielding 2 arcmin per pixel) and
enforced using a chin rest. As this study re-
quired relatively large eccentricity (40°), a sec-
ond display was used to present fixation targets (Fig. 1A; 9 inch LCD,
600 � 800 resolution, 75 Hz). The ambient luminance was 0.1 cd/m 2.
The background (i.e., gray level) luminance of the stimulus and the fix-
ation monitors were 42 and 30 cd/m 2, respectively.

Direction discrimination experiment (Experiment 1). Stimuli were drift-
ing gratings (spatial frequency, 0.375 cycles/°; contrast, 99%; random
starting phase) shown at 40° eccentricity in either the left or right visual
fields (separate blocks). Their spatial extent was set by a stationary raised
cosine envelope with an 8° radius. The temporal contrast envelope, a
Gaussian cutoff at �3 �, was used to control the stimulus duration.
Duration was defined as � of the temporal Gaussian. Contrast was de-
fined as the peak contrast of the temporal contrast envelope. Stimulus
velocity and duration were varied. Here, we define centrifugal velocities
(i.e., movement away from fovea) as negative and centripetal velocities
(i.e., movement toward fovea) as positive.

Using the method of constant stimuli, we estimated the stimulus ve-
locity at which these peripherally presented gratings were perceived as
stationary. This was done for four different durations (� � 10, 20, 80, and
240 ms). Participants completed one practice and eight experimental
sessions, with all four durations tested in each session (with their order
counterbalanced). For each duration block we selected a range of veloc-
ities to bracket psychometric functions, collecting 40 experimental trials
for each velocity. The results were fit with the cumulative Gaussian func-
tions. Data analysis revealed slightly more variable results in the visual
field on the same side as the nondominant eye. Thus, we considered
“dominant” and “nondominant” visual fields separately.

Each trial (Fig. 1B) started with a fixation cross (1.3° by 1.3°). After
1.5 s, a beep signaled the upcoming stimulus onset, which occurred 300 –
700 ms later. Upon stimulus offset, participants made a decision about

the perceived motion direction (toward fovea vs away from fovea). No
feedback was provided. We ran a control condition to test whether eye
movements were a factor underlying the observed results. Here, one
participant repeated the direction discrimination experiment with a 2°
fixation window that was enforced by an eye tracker (EyeLink 1000, SR
Research). The pattern of the results was nearly identical to the data
reported in Figure 2. Moreover, the correlation between the nulling
speed estimates (Fig. 2B) obtained when eye fixation was enforced by the
eye tracker and the data when eye fixation was self-enforced was 0.998.

Velocity discrimination experiment (Experiment 2). This experiment was
conducted to estimate stimulus likelihoods required by the models described
below. The likelihood function, an essential component of Bayesian estima-
tion, is assumed to reflect perceptual variability at the measurement encod-
ing stage (Kersten, 1994). To estimate this key aspect of sensory noise for
different durations, we measured just noticeable differences (JNDs) in speed
across velocity space. Such measurements are considered to reflect the vari-
ance of corresponding sensory measurements, with larger JNDs indicating
noisier sensory measurements (Ernst et al., 2002).

To measure JNDs for velocity difference, we kept most of the settings that
were in the direction discrimination experiment. The key change was that
the experimental task was different. Namely, two drifting gratings were pre-
sented sequentially and participants were asked to judge which grating was
moving faster toward the fovea (e.g., if both gratings appeared to move away
from fovea, the participants picked the slower grating). The interstimulus
interval (ISI) for different stimulus durations varied between 200 and 550
ms. This was done because of the long tails of Gaussian temporal envelopes
(i.e., to avoid subjective impressions of prolonged ISIs for long-duration
stimuli). The two stimuli were a standard grating and a comparison grating.
Standard stimuli were the same stimuli (in terms of their velocity and dura-

Figure 1. Experimental set up and task illustrations. A, A diagram showing the experimental set-up. A participant viewed the
fixation LCD monitor while stimuli were presented on a large (24 inch) CRT display. B, A schematic illustration of individual trials in
the direction discrimination experiment. Participants’ task was to judge whether stimulus motion direction was toward the fovea
(i.e., centripetal) or away from the fovea (i.e., centrifugal). No feedback was provided. The scale bar is 8° and refers to the stimulus
monitor only. C, Temporal frequency spectra for different duration stimuli used in the study. Note how the spread across temporal
frequencies increases as the duration decreases.
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tion) as those used in the direction discrimination experiment. Comparison
stimuli matched standard stimuli except that their velocity was different,
with the amount of difference adjusted by pairs of interleaved staircases
(three-up/one-down and two-up/one-down; Levitt, 1971). The results were
fit with the cumulative Gaussian functions (see Eq. 1 below), whose standard
deviations (�) were taken as JNDs (�JND).

Four participants from Experiment 1 took part in the velocity discrim-
ination experiment. Only one visual field location was tested for each
participant, chosen as 40° eccentricity on the dominant eye’s side. For
each duration we estimated JNDs for three to four velocities. Specific
velocities were selected with an aim to span the psychometric functions
shown in Figure 2A. This was done separately for each participant to
ensure appropriate coverage of relevant velocities. Each block of trials
involved one stimulus duration, with different velocities randomly inter-
leaved. Each duration was tested in two such blocks, with the order of
blocks counterbalanced. Overall, JNDs for each duration–velocity com-
bination were based on the results from four staircases. Across partici-
pants and conditions, JNDs ranged between �0.5°/s and �10°/s,
covering comparison stimulus velocities between �10°/s and 26°/s (Note
that these velocities refer to the estimated JNDs. The actual range of
velocities used to estimate these JNDs was larger.)

Preliminary estimation of �JND for each duration and velocity revealed
that JNDs for a given duration did not show systematic changes over the
tested range of velocities (Fig. 3A). Although departing from Weber’s
law, this result is consistent with prior studies where constant JNDs were
found for velocities close to 0°/s (McKee, 1981; Orban et al., 1984; De
Bruyn and Orban, 1988; Hedges et al., 2011) (note that although some of
our velocities were physically fast, they were perceived as near stationary
by our subjects; Fig. 2A). Because of this JND constancy, we assumed a
constant JND across velocities for each duration in the main analysis.

Likelihood function estimation. Likelihood functions, reflecting mea-
surement of noisy sensory inputs for different stimuli, were modeled as
cumulative Gaussian distributions centered at the actual stimulus veloc-
ity. First, we directly fitted the results of the velocity discrimination ex-
periment (Experiment 2) with cumulative Gaussian functions:

Pr�v1 � v2� � lapse � bias � �1 � lapse���v1 � v2

�JND
�,

(1)

where �1 and �2 represent velocities of the two comparison stimuli, � is
the cumulative standard Gaussian distribution, and �JND is its standard
deviation. The lapse parameter is used to account for a small number of
trials where participants made careless errors, while the bias parameter is
used to allow asymmetric distribution of lapse decisions (i.e., bias in lapse
responses) (Wichmann and Hill, 2001). The mean estimates for lapse
rate and bias parameters were 0.060 and 0.51, indicating an acceptable
lapse rate with no systematic bias. These lapse and bias values, estimated
by directly fitting the raw data for each participant and each stimulus
duration, were used as constants in the main analysis. This allowed us to
limit the number of free parameters.

The standard deviation from the velocity discrimination experiment
(�JND) relates to the internal sensory noise (�sense) in the following way:

�JND � �var�v1 � v2� � ��sense
2 � �sense

2 � �2�sense. (2)

Specifically, �JND represents the variability of velocity differences be-
tween the two comparison stimuli (�1 , �2 ) whose individual variability is
set by �sense. Thus, the standard deviation of the likelihood function
(�sense) was defined as �JND/	2. This assumption was confirmed by a
control model described at the end of the Materials and Methods section.

Reconstruction of prior distributions. The prior density function was
estimated by two approaches. First, we aimed to estimate the prior with-
out making assumptions about the specific shape of its distribution.
Here, the prior density function was not restricted to a particular param-
eterized family. Instead, we searched the function space by assuming that
the density function follows the Gaussian process (Leonard, 1978). The
Gaussian process provides a straightforward way of specifying the prior
probability of nonparametric density functions. Here, we discretized the

prior density function at 25 control points (X � [�16, �14, . . ., 30,
32°/s]) spaced fine enough to approximate most continuous functions.
We also implemented a control model that included a wider prior do-
main (X � [�28, � 26, . . ., 34, 36°/s], yielding 33 control points) and
found no notable differences in the results. The density values of the
control points followed zero mean n-dimensional Gaussian distribution
with covariance matrix 
p, where n is the number of control points:

denGP�X� � N� 0,�p� . (3)

The entries of the covariance matrix were determined by the squared
exponential covariance function, which specifies the covariance of two
density values of control points xi and xj as:

Cov�denGP� xi�, denGP� xj�� � exp�� 1

2�xi � xj

l �2�, (4)

where l is a constant determining the smoothness of the density function,
set to 4 in all analyses (changes in l had minimal effects on the overall
shape of the prior).

In the second approach, we parameterized the prior density function
with a skewed Gaussian distribution. This function was chosen based on
the results obtained from the nonparametric prior described above. The
skewed Gaussian distribution is formalized as:

denSG� x� �
2

�
��x � 	

� ���
�x � 	

� �� , (5)

where � is the standard Gaussian distribution, � is the standard cumulative
Gaussian distribution, and 	, �, and 
 are free parameters representing the
central tendency, variability, and skewness of the distribution. This function
becomes Gaussian when 
 is zero, right skewed when 
 is positive, and left
skewed when 
 is negative.

Fitting Bayesian observer models. For all models, the estimate of veloc-
ity (�̂) is a deterministic function of the sensory measurement (vm),
likelihood function, and the prior distribution:

v̂ �
1

���x � vm

�sense
�den�x�dx

�x��x � vm

�sense
�den�x�dx. (6)

where � is a standard Gaussian density function. The probability of
“toward fovea” response resulting from sensory input (�) is then given:

Pr�v̂ � 0� � ��v � criterion

�sense
�,

where�x��x � criterion

�sense
�den�x�dx � 0. (7)

We numerically approximated integrals of Equations 6 and 7 using the
trapezoidal rule.

Once the probability of the toward fovea response (Pr(�̂ijk � 0)) for a
participant i, a duration j, and a velocity k is given, the number of toward
fovea responses NTF(ijk) among the total trials of the condition Ntotal(ijk)

follows binomial distribution:

Pr�NTF�ijk� � nTF�ijk�� � binomial�nTF�ijk�; Ntotal�ijk�, P�v̂ijk � 0��,

(8)

where nTF(ijk) is the observed number of toward fovea response. The
log-likelihood of the entire direction discrimination dataset (Experiment
1) equals the sum of log-likelihoods of all data points:

log(Pr�datadirection � paramsdirection�)

� �
i�S

�
i�D

�
k�V

log(Pr�NTF�ijk� � nTF�ijk��), (9)
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where S, D, and V represent the sets of partici-
pants, durations, and velocities, respectively.

Analogously, the log-likelihood of the entire
velocity discrimination dataset (Experiment 2)
equals the sum of log-likelihoods of individual
responses:

log(Pr�datavelocity � paramsvelocity�)

� �
i�S

�
j�D

�
k�T

log(Pr�Rijk � rijk�), (10)

where S, D, and T represent the sets of partici-
pants, durations, and trials (i.e., velocity differ-
ences tested on individual trials) and rijk is the
observed response (�1 or �2 ).

We fit the direction discrimination data and
the velocity discrimination data concurrently
by evaluating the sum of log-likelihood for the
two datasets (Eq. 9 and Eq. 10) across the com-
bined parameter space. The prior distributions
were fit either to the combined dataset (i.e., one
prior distribution for all participants) or, in
separate models, to the individual data. All the other parameters were fit
to the individual data.

Summary of model parameters. Both the parametric prior and non-
parametric prior Bayesian observer models had four parameters as-
sociated with the slopes of psychometric functions for velocity
discrimination (Experiment 2), i.e., with one sensory noise parameter
(�sense) for each stimulus duration. As described above, these sensory
noise terms were assumed to be �JND/	2. To define prior distribu-
tions, 25 control points (i.e., parameters) were used for the nonpara-
metric prior, while three parameters defined the skewed Gaussian
prior. A large number of parameters were required for the nonpara-
metric before estimate the prior without initial assumptions about its
shape. The estimated prior distributions were relatively smooth (Fig.
4A, B), indicating that our use of 25 control points did not result in
overfitting.

Markov Chain, Monte Carlo (MCMC) sampling (using a Metrop-
olis–Hastings algorithm) was used to estimate model parameters. We
used a million iterations as a burn-in period and thinned the samples
by selecting every 1000th sample in the chain. MCMC sampling tech-
nique allowed us to accurately estimate parameter credible intervals
(CIs; i.e., Bayesian confidence intervals), which was especially infor-
mative in interpreting the reliability of the reconstructed prior distri-
bution. For the nonparametric prior, the estimated 95% CIs (shaded
regions in Fig. 4A, B) reveal that we were able to precisely estimate the
prior shape for velocities that were tested in both the direction and the
velocity discrimination experiments (between �2°/s and 16°/s). For
velocities outside that range, 95% CIs gradually increased, indicating
that the reliability of the reconstructed prior depends on the velocity.

Control model. Here, we examined the assumption that the standard
deviation of the likelihood function (�sense) is equivalent to �JND/	2 (see
Eq. 2). Specifically, we implemented a nonparametric prior model in
which �sense was a linear function of �JND, such that �sense � 
 � ��JND.
The slope (
) and intercept (�) were free parameters. The modeled pos-
terior density of parameters 
 and � were �0.29 and 0.81. Ninety-five
percent CIs for 
 and � were [�1.37, 0.79] and [0.13, 1.59]. Notably,
95% CIs for 
 and � included zero and 1/	2, respectively. The recon-
structed prior did not show any qualitative differences from that shown
in Figure 4. This confirms that the sensory noise estimated from the
velocity discrimination task is consistent with the sensory noise assumed
by the participants in the direction discrimination task.

Results
Behavioral results
To investigate motion perception biases in the visual periphery,
we measured changes in perceived motion direction as a function
of stimulus duration and velocity. The range of velocities

spanned both centrifugal and centripetal directions and always
included physically stationary stimuli (velocity � 0°/s). The re-
sults (Fig. 2A) revealed pronounced biases in peripheral motion
perception. All stationary stimuli, regardless of their duration,
were perceived as moving in the centrifugal direction (i.e., away
from fovea). The magnitude of this illusion increased with de-
creasing stimulus duration. Subjectively, this illusion is very com-
pelling. At 40° eccentricity, briefly presented stationary stimuli
appear to unambiguously move away from fovea.

Next, for each duration we estimated the “point of subjective
stationarity,” taken as the velocity at which psychometric func-
tions crossed 0.5 (i.e., null velocity illustrated by the dashed line
in Fig. 2A). All velocity estimates at which stimuli were perceived
as stationary were centripetal, with their magnitude increasing
with decreasing duration (Fig. 2B). This relationship was linear in
log–log space, with slopes near unity (0.999 and 1.01 for domi-
nant and nondominant sides, respectively). For 10 ms stimulus
duration, stimuli needed to be moving toward the fovea at �7°/s
to be perceived as stationary—revealing a rather dramatic bias in
favor of centrifugal motion directions in visual periphery.

As shown in Figure 2, we found stronger centrifugal biases
with shorter stimulus durations. This result likely reflects increas-
ing uncertainty about stimulus motion direction with decreasing
duration, which, in turn, increases its susceptibility to internal
biases. As discussed below, this increase in directional uncer-
tainty is largely due to the broadening of the temporal frequency
spectrum with decreasing duration (Fig. 1C; Derrington and
Goddard, 1989). To provide a behavioral estimate of changes in
stimulus uncertainty, we measured JNDs for velocity discrimina-
tion (see Materials and Methods). The results showed that JNDs
were strongly affected by stimulus duration (Fig. 3A), increasing
sharply for brief stimuli. The variations in JND were higher across
different durations than across velocity within duration. Thus, to
get a JND estimate for each stimulus duration we simply averaged
JNDs across velocity (see Materials and Methods for further jus-
tification of this step). The result (Fig. 3B) revealed an exponen-
tial relationship between the spread of the temporal frequency
spectrum for different durations and measured JNDs, showing
that stimulus uncertainty is nicely captured by the stimulus
spread in the frequency space. The exponential relationship sim-
ply indicates that velocity discrimination performance saturates
with increasing duration.

Figure 2. The results from the direction discrimination experiment. A, The effects of stimulus duration and velocity on perceived
motion direction at 40° eccentricity. Only data from the dominant eye’s side are shown. The data from the opposite visual field were
similar, but more variable. Positive velocities indicate motion toward the fovea. For each duration, the data were averaged across
observers and fitted with a cumulative Gaussian function. B, Centrifugal speeds at which different duration stimuli were perceived
as stationary when presented at 40° eccentricity (for both dominant and nondominant eyes’ sides). These speeds were estimated
for each participant by taking the point at which psychometric functions cross 0.5, i.e., the velocity where the stimulus was equally
likely to be perceived as moving in centrifugal and centripetal directions (as shown by the dashed line in A). Lines are linear fits in
log–log space. In both panels, error bars indicate SEMs calculated across five participants.
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Bayesian models
We modeled two Bayesian observers with an aim to explain the
observed centrifugal bias by taking into account both duration-
dependent changes in stimulus uncertainty and a duration-
independent prior. Such Bayesian models have proven successful
at capturing changes in motion perception resulting from
changes in stimulus uncertainty (Hürlimann et al., 2002; Weiss et
al., 2002; Stocker and Simoncelli, 2006; Hedges et al., 2011). Here,
we describe two similar models that determine motion direction
from (1) likelihood function that reflects noise contaminated
sensory measurements, and (2) prior assumptions about the pe-
ripheral motion signals. Specifically, on each trial Bayesian esti-
mation includes two steps. First, the sensory system measures the
physical stimulus speed �, yielding the measurement �m, which is
variable due to internal sensory noise. Second, the Bayesian ob-
server uses a deterministic function that maps the measured
speed �m to the estimated speed �̂. This mapping involves apply-
ing Bayes’ rule to integrate the likelihood of �m given � with
relevant prior knowledge, resulting in the posterior distribution
of velocity. The mean of this posterior distribution determines
the model’s directional judgment.

The likelihood functions were constrained by both the velocity
discrimination experiment (i.e., velocity JNDs) and the direction

discrimination task (see Materials and
Methods). JND measurements are consid-
ered to reflect the variability of correspond-
ing sensory measurements (Ernst and
Banks, 2002). Sensory noise also affects di-
rection discrimination judgments (cf. Fig.
2), where it determines the extent to which
motion direction judgments are affected by
the prior. To examine model performance,
we first compared velocity JND estimates
obtained by directly fitting the raw data (us-
ing Eq. 1) and those estimated by Bayesian
models (where �JND � 	2�sense). The re-
sults show that the sensory noise estimated
directly from velocity discriminations is
consistent with the modeled sensory noise
(Fig. 3C, D). The exception was the 10 ms
duration condition for the model using the
parametric prior (Fig. 3D). This and other
differences between the models are dis-
cussed in a separate section at the end of
Results.

Next, we consider the reconstructed
prior distributions (Fig. 4). The recovered
nonparametric population prior (see Ma-
terials and Methods) is strongly biased to-
ward centrifugal motions (Fig. 4A). The
prior has a largely unimodal shape, which
is consistent both with priors assumed in
earlier studies (Weiss et al., 2002; Sotiropou-
los et al., 2011) and with experimentally ex-
tracted priors (Stocker and Simoncelli,
2006). However, its peak centers around
8°/s in centrifugal direction. This result dif-
fers from slow motion priors that were
found with foveal/parafoveal stimuli (e.g.,
Stocker and Simoncelli, 2006), indicating
that, for peripherally presented stimuli, hu-
man motion processing is biased in favor of
centrifugal motion directions. We also ob-

served a consistent but not significant centripetal component (Fig.
4A). Still, 86% of the prior distribution covers centrifugal speeds,
providing the first computational description of a strong centrifugal
bias in peripheral motion processing. In a separate analysis, we also
modeled behavioral data assuming independent priors for each par-
ticipant (Fig. 4B). The centrifugal component of recovered priors
was relatively similar across participants. Some differences were
found for the centripetal component, where the participant that
showed the strongest illusory motion (S2, see open diamonds in Fig.
5C, D) had the least pronounced centripetal component. This indi-
vidual difference indicates that between-participant differences in
velocity JNDs (i.e., likelihood) cannot fully explain the observed il-
lusory motion perceptions. This is particularly relevant for the brief-
est stimulus tested (10 ms), because these were the only stimuli
whose likelihood covered fast centripetal speeds (Fig. 3). Namely, for
most participants, the strength of the illusory motion for 10 ms stim-
uli was not as strong as predicted by velocity JNDs and a strictly
centrifugal prior. We will return to this issue in the Model results
section below.

Motivated by the recovered nonparametric priors, we ran a sep-
arate model where the prior density was parameterized as a skewed
Gaussian distribution—a function well suited to capture statistically
significant components of the nonparametric prior. By fitting this

Figure 3. The results and modeling of velocity discriminations. A, JNDs were estimated as standard deviations of cumulative
Gaussian functions fitted the velocity discrimination data. Different symbols show data for four stimulus durations according to the
legend shown in B. For each participant, we selected standard velocities to span the dynamic ranges of direction discrimination
psychometric functions for each duration (see Fig. 2). This resulted in different velocities tested for different participants. Velocities
at which all of the participants were tested are connected with solid lines. B, The relationship between stimulus spread in temporal
frequency space and the average JND speed for each of four durations. All stimuli were presented in temporal Gaussian envelopes,
which yielded corresponding Gaussians in frequency space whose standard deviations indicate temporal frequency spread for
different durations. The results were fitted with an exponential function. Error bars are SEM calculated across four participants. C,
D, Model estimated JND speeds (computed as �JND �	2�sense) for the nonparametric prior model (C) and the parametric prior
model (D). The parametric model underestimates the JND for the shortest duration by �2.5°/s. See Results for the implications of
this finding.
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model to the group and individual data, we
were able to recover the group (Fig. 4C) and
individual priors (Fig. 4D). As with the non-
parametric prior, we found that the prior
distributions are strongly biased toward
centrifugal speeds, with 98.98% of the prior
distribution covering centrifugal speeds.
The best fitting parameters for the group
data were 	 � �4.0°/s (95% CI: �8.7,
�2.4), � � 5.3°/s (95% CI: 2.8, 12.0), and

 � �2.1°/s (95% CI: � 7.1, 0.2). This
nearly significant negative skew indicates a
skew toward centrifugal speeds. The mode
of the prior density (i.e., its peak), which is
different from 	 in skewed Gaussian, was
�7.1°/s (95% CI: �9.3, �4.9). We found
no quantitative or qualitative differences be-
tween the group (Fig. 4C) and individual
priors (Fig. 4D).

Model results
Both models closely matched behavioral
data, as shown by the fits to the group data
(Fig. 5A, B). As duration decreased, both be-
havioral and model results showed stronger
centrifugal biases. Also, stationary stimuli in
both sets of results were perceived as moving
away from fovea. In sum, the modeled
Bayesian observer quantitatively captures
psychophysical biases of motion per-
ception in visual periphery. R 2 values
for fits to the individual participants’
data using the nonparametric prior
ranged between [0.923, 0.976] for the
group prior, and [0.976, 0.986] for individual priors. Individ-
ual participant fits using the parametric prior were slightly
worse, with R 2 values between [0.841, 0.971] for the group
prior and [0.954, 0.975] for individual priors.

We also compared points of subjective stationarity (i.e., the null-
ing speed) derived from the individual data (Fig. 2B) with those
provided by the models. The results (Fig. 5C, D) show a close corre-
spondence for both group (solid symbols) and individual (open
symbols) data. One slight but systematic error was an overestimation
of the nulling speed for 10 ms stimuli by the parametric prior model
(Fig. 5D; points to the right of the dashed line). This illustrates the
key difference between the models. By lacking a centripetal compo-
nent (Fig. 4), the parametric prior model fails to closely fit the data
for 10 ms duration stimuli. This is partially offset by the underesti-
mation of sensory noise (�sense) for 10 ms stimuli by the parametric
prior model (Fig. 3D). However, the model still slightly overesti-
mates the magnitude of illusory motion for very brief stimuli. This
result suggests three nonexclusive explanations. First, as suggested
by the nonparametric prior model, the actual prior might indeed
include a centripetal component. As outlined in the Discussion, such
prior might have an ecological validity. However, it is also possible
that our behavioral measurements either underestimated the mag-
nitude of illusion for 10 ms stimuli or overestimated velocity JNDs
for these brief stimuli.

Discussion
The diversity in our visual input is astonishing. Certain inputs,
however, are more prevalent than others, reflecting the statis-

tics of our visual environment (Simoncelli and Olshausen,
2001; Geisler, 2008; Seydell et al., 2010; Girshick et al., 2011).
It has long been known that the visual system exploits these
statistical regularities, typically resulting in better inferences
about our visual environment (Kersten et al., 2004; Geisler,
2008). By making a priori assumptions about incoming visual
signals, the overall efficiency of perception improves. How-
ever, this comes at the cost of systematic biases (illusions) that
often reveal unique insights into underlying mechanisms and
computations (Kersten et al., 1996). Here, we report a new
visual illusion where stationary objects in the visual periphery
are perceived as moving centrifugally, while objects moving as
fast as 7°/s are perceived as stationary. These results can be
quantitatively explained by a Bayesian prior favoring centrif-
ugal motions in the visual periphery.

While the centrifugal prior revealed here unequivocally dif-
fers from previously assumed and/or extracted priors on mo-
tion speed and velocity (Hürlimann et al., 2002; Weiss et al.,
2002; Stocker and Simoncelli, 2006; Hedges et al., 2011), it is
consistent with the Bayesian framework outlined in those
studies. Previous studies used foveal/parafoveal stimuli, and
the resulting priors appear to qualitatively match input statis-
tics for foveal/parafoveal motions, which are dominated by
slow-moving stimuli. The assumption that priors reflect rele-
vant environmental statistics (Girshick et al., 2011) predicts
that priors should adjust to changes in input statistics. Indeed,
even for centrally presented stimuli, repeated exposure to fast
motions can alter the slow speed prior, shifting its mean to-
ward faster speeds (Sotiropoulos et al., 2011). Similarly, sub-

Figure 4. The estimated prior distributions for the nonparametric prior (A, B) and the parametric prior (C, D) models. A and C
show prior distributions fitted to the combined dataset. B and D show prior distributions fitted to the individual data for four
participants. These prior density functions were recovered from a Bayesian model derived from the velocity discrimination exper-
iment and fitted to the results of the motion discrimination experiment. The gray areas in A and B represent 95% CIs. All of the prior
density functions peak at negative velocities, indicating that the observed priors are strongly biased toward centrifugal motion
directions.
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jects that are exposed to a biased distribution of motion
directions adjust their expectations accordingly (Chalk et al.,
2010). Thus, the empirical evidence indicates that past expe-
rience plays a key role in shaping Bayesian priors. The strong
centrifugal prior observed here is consistent with the prepon-
derance of centrifugal motions in the visual periphery, provid-
ing new evidence for a link between environmental statistics
and perceptual assumptions. Additionally, this finding adds to
the large number of differences between central and periph-
eral motion perception (Brandt et al., 1973; Baker and Brad-
dick, 1985; Lappin et al., 2009; Tadin et al., 2012).

How does the recovered prior correspond to naturally ex-
perienced motion signals? If we make a gross simplification
and assume that the visual periphery is only exposed to the
expanding optic follow, then a centrifugal prior peaking at 8°/s
translates to 0.65 km/h walking speed at our display condi-
tions (83 cm viewing distance; 40° eccentricity). This is con-
siderably less than the typical walking speed (�5 km/h). Of
course, our visual experience is not restricted to the expanding
optic flow. These other forms of visual input would likely
attenuate centrifugal biasing of motion perception. For exam-
ple, peripheral motion inputs due to smooth pursuit eye
movements (SPEMs) are unlikely to exhibit a centrifugal bias
(Kowler, 2011). SPEMs are a potent source of fast peripheral
motions (
30°/s) and might partially account for the centrip-
etal component of recovered nonparametric priors (Fig. 4).
However, whether the observed centripetal component is in-
deed due to SPEMs is speculative. Given the close coupling of
oculomotor and motion processing (Kowler, 2011), it is pos-

sible that motion perception during
SPEMs might be associated with a dis-
tinct set of prior assumptions. The cen-
tripetal component might also reflect
our experience with the contracting op-
tic flow (e.g., while swaying away from a
computer monitor). Finally, other pe-
ripheral visual inputs are unlikely to ex-
hibit strong centrifugal biases and, thus,
likely attenuate the effects of the optic
flow. In contrast, we also experience
very fast self-motions such as driving
(although all participants tested in this
study have very short commutes). In
sum, while it is safe to assume that our
experience with peripheral motions has
a strong centrifugal bias, it is difficult to
link the observed results to real life ex-
periences. An additional complication is
that the velocity distribution of visual
motion inputs also depends on stimulus
eccentricity and viewing distance. Stim-
uli that are closer to fovea will have
weaker centrifugal biases, while more
distant stimuli will tend to have slower
retinal velocities. Thus, it will be impor-
tant for future work to also consider
these two parameters.

In the Bayesian framework, the ef-
fects of the prior become progressively
more apparent as the stimulus uncer-
tainty increases (Körding and Wolpert,
2004), simply reflecting the fact that
when incoming sensory signals are un-

reliable, the internal default estimate (i.e., the prior) becomes
a better choice. Here, we degraded the reliability of motion
direction by decreasing stimulus duration. As the stimulus
duration decreases, its spread in the temporal frequency space
increases, decreasing the reliability of velocity estimates (Fig.
1C; Derrington and Goddard, 1989). This occurs for both
moving and stationary stimuli, with the only difference being
that the motion energy of stationary stimuli (of finite dura-
tion) is balanced between opposing motion directions (i.e.,
centered at 0 Hz). Thus, changes in stimulus duration provide
a simple way to manipulate the uncertainty of motion signals.
Stimulus contrast is often used to accomplish the same aim
(Stocker and Simoncelli, 2006). However, for our rather large
and brief grating stimuli, changes in stimulus contrast have
nonlinear, interactive effects on motion discriminations— ef-
fects stemming from contrast-dependent changes in spatial
suppression (Tadin et al., 2003). Moreover, spatial suppres-
sion strength also interacts with stimulus speed (Lappin et al.,
2009), providing an additional complication. For these rea-
sons, we chose to use stimulus duration to manipulate stimulus
uncertainty, estimating Bayesian likelihood from empirically
observed velocity JNDs (Fig. 3A). Note that because of a
close relationship between measured JNDs and stimulus
spread in frequency space (Fig. 3B), stimulus description in
frequency space could be used to directly estimate Bayesian
likelihood.

The centrifugal prior reported here is consistent with pre-
vious reports of directional anisotropies in the visual periph-
ery, providing a possible computational explanation for those

Figure 5. The comparison of modeled and behavioral results. A, B, The results are shown for the nonparametric prior (A)
and parametric prior (B) Bayesian observer models. Solid symbols show direction discrimination data for human partici-
pants who also completed the velocity discrimination experiments (n � 4). The solid lines are the results of the models
based on different priors for individual subjects. We found a close correspondence between model and behavioral results
(R 2 � 0.989 and 0.971 for nonparametric and parametric prior models, respectively), with both exhibiting strong centrif-
ugal biases that strengthen with decreasing duration. Models based on unified group priors also provided close fits to the
data (R 2, 0.991 and 0.947). Error bars are SEM calculated across four participants. C, D, The comparison nulling speeds
derived from the raw data (as shown in Fig. 2B), with nulling speeds provided by the models. Four solid symbols in each
panel show average nulling speeds for four different stimulus durations, such that the nulling speed increases with
decreasing duration. Open symbols show the same data for individual subjects. The data for the 10 ms stimulus duration are
shown to the right of the dashed lines.
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earlier findings. For random-dot stimuli, motion detection
and discrimination thresholds are lower for centrifugal than
for centripetal motion directions (Ball and Sekuler, 1980). The
same results were found for second-order stimuli (Smith et al.,
1994). Counterphase gratings (stimuli composed of two su-
perimposed gratings moving in opposite directions) appear to
move centrifugally when presented in the periphery, indicat-
ing that the centrifugal motion component dominates over
the centripetal component (Georgeson and Harris, 1978).
Consistent with this finding, centrifugal motions yield stron-
ger MEG signals than centripetal motions (Holliday and
Meese, 2008). This centrifugal advantage is likely a key factor
in the so-called “radial bias,” where stronger BOLD responses
are found in radial, rather than tangential, motions (Raemaek-
ers et al., 2009). In sum, these studies are broadly consistent
with a centrifugal bias in motion perception. Our results di-
rectly demonstrate that this bias is quite strong, affecting both
moving and stationary stimuli, and show that it can be ex-
plained by a centrifugal Bayesian prior.

What neural mechanism might underlie the observed cen-
trifugal bias in the visual periphery? For orientation discrim-
inations, observed perceptual biases can be explained by a
nonuniform distribution of orientation preferences (Girshick
et al., 2011), such as that found for V1 neurons (De Valois et
al., 1982). Similar to orientation tuning, tuning preferences of
motion selective neurons are not uniformly distributed. In
cortical area MT, a key motion processing region (Born and
Bradley, 2005), neurons with peripheral receptive fields tend
to have centrifugal preferred directions (Albright, 1989). Sim-
ilar biases are found in V1 (Holliday et al., 2008). Such tuning
anisotropies can bias neural responses to moving stimuli, es-
pecially if the distribution of stimulus motion directions is
broad. For example, consider a brief stimulus moving toward
the fovea. Because of its broad temporal frequency spectrum,
this motion will stimulate detectors tuned to both centripetal
and centrifugal motion directions. As the physical motion di-
rection is centripetal, those units will have stronger inputs.
However, if neural processing is biased in favor of centrifu-
gally tuned units, the resultant estimate may differ from the
physical motion direction. This same scenario also applies to
stationary stimuli, which for subsecond durations have non-
trivial spreads in the temporal frequency spectrum. In fact,
such brief stationary stimuli provide an elegant way to reveal
motion perception biases because they are balanced in terms
of directional motion energy. Thus, even a small imbalance in
motion decoding might result in perceived motion direction.
Indeed, even the longest stimulus that we used (� � 240 ms,
yielding about 1 s total duration) tended to be perceived as
moving away from fovea (Fig. 2). This result, however, does
not indicate that we should routinely perceive peripherally
presented stationary objects as moving. Nulling speeds for the
240 ms stimulus were only 0.2°/s (Fig. 2B), which, during
natural vision, is unlikely to evoke a compelling or even no-
ticeable sensation of motion in the visual periphery. One ex-
ception would be briefly presented stationary stimuli, such as
a light flash. Based on our results, we speculate that even in
natural environments such stimuli would be perceived as
moving centrifugally. To speculate even further, we suspect
that illusory motion of stationary flashes in visual
periphery would contribute to the attentional salience of such
stimuli.
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