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Abstract

Humans can easily describe, imagine, and, crucially, predict a wide variety of behaviors of

liquids—splashing, squirting, gushing, sloshing, soaking, dripping, draining, trickling, pool-

ing, and pouring—despite tremendous variability in their material and dynamical properties.

Here we propose and test a computational model of how people perceive and predict these

liquid dynamics, based on coarse approximate simulations of fluids as collections of inter-

acting particles. Our model is analogous to a “game engine in the head”, drawing on tech-

niques for interactive simulations (as in video games) that optimize for efficiency and natural

appearance rather than physical accuracy. In two behavioral experiments, we found that the

model accurately captured people’s predictions about how liquids flow among complex solid

obstacles, and was significantly better than several alternatives based on simple heuristics

and deep neural networks. Our model was also able to explain how people’s predictions var-

ied as a function of the liquids’ properties (e.g., viscosity and stickiness). Together, the

model and empirical results extend the recent proposal that human physical scene under-

standing for the dynamics of rigid, solid objects can be supported by approximate probabilis-

tic simulation, to the more complex and unexplored domain of fluid dynamics.

Author summary

Although most people struggle to learn physics in school, every human brain is a remark-

able “intuitive physicist” when it comes to the quick, unconscious judgments we make in

interacting with the world. Almost effortlessly, and with surprisingly high quantitative

accuracy, we can judge when a plate placed near the edge of a table might be at risk of fall-

ing, or how far a partially filled glass of water can be tipped before the water is in danger

of spilling. What kinds of computations in the brain support these abilities? We suggest an

answer based on probabilistic inference operating over particle-based simulations, the
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same class of approximation methods used in video games to simulate convincing real-

time interactions between objects in a virtual environment. This hypothesis can poten-

tially account for people’s quantitative, graded judgments in diverse and novel situations

including a wide array of materials and physical properties, without positing a large num-

ber of separate systems or heuristics. Here, we build on previous evidence that a system of

approximate probabilistic simulation supports judgments about rigid objects (e.g. judging

the stability of towers of blocks, as in the game Jenga), and ask whether people can also

make systematic and accurate predictions about flowing and splashing liquids, such as

water or honey. We show that it is possible to capture people’s quantitative predictions

using a computational model that approximates the true underlying fluid dynamics to

varying degrees of coarseness, and find that people’s responses are most consistent with a

very coarse approximation; while typical engineering applications might use tens or hun-

dreds of thousands of particles to simulate a fluid, the brain might get by with roughly a

hundred particles. Furthermore, we find that people consistently underestimate the

potential energy of a splashing liquid in our virtual scenes, and that our model captures

this behavior.

Introduction

From a glance at liquid flowing into a glass (Fig 1A), you can infer a great deal: it is pouring

rapidly, likely from a spout or small opening; it is not viscous; little will likely splash out,

although if the angle of the glass were lowered slightly, perhaps much more might escape.

Even young children can perceive and interact with liquids in motion (Fig 1B) in ways well

beyond the capabilities of modern robots and artificial intelligence (AI) systems. How do peo-

ple draw rich intuitions about liquids? What is the nature of people’s implicit knowledge of liq-

uid dynamics? By what mechanisms is this knowledge applied to support their everyday

interactions with liquids?

Fig 1. Humans are adept at reasoning about liquids. (A) Dynamic fluids are very complex, yet ubiquitous in

everyday scenes. (B) Humans–even young children–can reason about and interact with liquids effectively.

https://doi.org/10.1371/journal.pcbi.1007210.g001
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A growing body of evidence supports the view that humans have rich knowledge of every-

day rigid body physics, which inform their predictions, inferences, and planning through a

system of probabilistic inference [1–7]. [3] proposed a cognitive mechanism for physical scene

understanding based on “approximate probabilistic simulation”. They posited that objects’

spatial geometry and physical attributes, as well as certain laws of mechanics, are represented

approximately, and support fast, efficient probabilistic judgments over short time scales via

small numbers of simulations based on sampled estimates of the underlying world state. Their

model of human cognition’s “intuitive physics engine” explained people’s physical predictions

about stability and support relationships, and the motion of objects under gravity, across a

wide range of rigid body scenes.

Here we explore how people understand physical scenes involving fluids moving around

rigid objects, modeling their judgments as being driven by, in part, some form of approximate

probabilistic simulations. We asked three related questions: How well can people predict the

behavior of liquids in complex scenes? Can approximate simulation-based models account for

people’s quantitative predictions across a range of scenes and different kinds of liquids? How

do people’s uncertainty and computational resource limitations influence their judgments?

We tackled these questions by probing people’s predictive judgments in two psychophysical

experiments, and comparing human predictions to five different models, including four differ-

ent kinds of simulation-based models varying in their computational complexity and physical

assumptions, and a simple neural network alternative that approaches the problem as a pattern

recognition task, using a deep convolutional network of the kind that has recently been suc-

cessful in many computer vision applications [8], and which have also begun being studied in

fluid simulation [9]. We examined how well people’s predictions matched each model, and

how they co-varied with each model as a function of liquid properties, such as viscosity and

stickiness.

Our experiments asked human participants to predict how a liquid would flow through and

around complex arrangements of obstacles (Fig 2). We used two related tasks representative of

different kinds of real-world judgments. In the first experiment (example stimuli shown in Fig

2A), participants were asked to predict what percentage of the liquid would end up on the

right side of the divider. In the second experiment (example stimuli shown in Fig 2B), partici-

pants were asked what percentage would end up in the cup. In each experiment, we used com-

puter-animated liquid stimuli with both water-like and honey-like properties. This allowed us

to test both people’s abilities to predict flow for a range of different everyday liquids, and dif-

ferent models’ abilities to capture human intuitions across that range.

We compared people’s judgments to a spectrum of simulation-based computational mod-

els, as well as a neural network alternative. Our two most sophisticated models are particle

simulation models inspired by approximations to physics-based models used in computer

graphics, video games, and computational fluid dynamics: the “Intuitive Fluids Engine” (IFE)

model, based on smooth particle hydrodynamics (Fig 3), is the most physically appropriate for

our tasks, although it is also the most computationally complex. The other physics-based simu-

lation account, “MarbleSim”, is similar but uses rigid body interactions between particles. We

also consider a heuristic dynamic simulation model (“SimpleSim”) that is computationally

simpler than either physics-based model, and an even simpler heuristic simulator (the “Gravity

heuristic”) that is not based on a dynamic simulation at all, but only on the geometric principle

that particles under gravity move downwards unless blocked by obstacles. All the dynamics-

based models had degrees of freedom permitting them to make more water-like or honey-like

predictions, and we explored to what extent varying these parameters could let these models

capture people’s varying intuitions for these different kinds of liquids.

Modeling human intuitions about liquid flow with particle-based simulation
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Fig 2. Experimental stimuli. (A) Examples of water and honey stimuli from Experiment 1 after gravity was applied. (B) Examples of water and

honey stimuli from Experiment 2. (Subjects only saw liquid in motion as part of the practice phase, and otherwise only saw a static image of the

liquid in its starting position).

https://doi.org/10.1371/journal.pcbi.1007210.g002

Fig 3. SPH overview. (A) How SPH approximates a fluid. For any location in the fluid, marked “X” on the diagram,

particles in the local neighborhood are used to approximate the fluid’s, density, pressure, and dynamics at that point.

The bell-shaped envelope depicts the strength of each neighbor’s influence on the approximation, which falls off with

distance. (B) SPH simulations can be allocated more resources to achieve more precise approximations. In the second

and third panels, more particles are allocated than in the first, which will result in more accurate and stable simulated

fluid dynamics. (C) The rules by which particles interact can be varied to produce different qualitative fluids and

materials. The first three panels show differences in splashing behavior as a function of viscosity. The fourth panel

shows a non-Newtonian fluid that sticks to rigid surfaces (like honey).

https://doi.org/10.1371/journal.pcbi.1007210.g003
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To preview our results, we found that the more physically motivated particle-based simula-

tion models provided the best single account of people’s predictions across all our experimen-

tal conditions. These models offer a general-purpose computational account of how people

predict the motion of fluids on short time scales, in a similar spirit to [3]’s approximate proba-

bilistic simulation models of intuitive physics for solid rigid bodies. The flowing liquids in our

experimental scenes are much more complex, with far more degrees of freedom, than the rigid

body systems on which [3]’s original “intuitive physics engine” work focused, but our “intui-

tive fluids engine” (IFE) model is developed in a similar spirit. The model is based on a com-

monly used method for simulating fluids, based on collections of dynamic, interacting

particles, which is theoretically appealing on several grounds: It can capture a wide variety of

materials by varying the specific interaction rules, it includes natural methods for adjusting the

computational resource demands by varying the number of particles and complexity of their

interactions, and it is relatively simple compared to alternative physical simulation methods.

However, while real liquids are much more complex than rigid solids, a main contribution of

the present paper is to demonstrate that highly approximate methods for simulating fluids

may still be sufficient for the every-day kinds of predictions that people make, and that these

approximations may still be cognitively and computationally plausible. Particles are an intui-

tive idea for simulating physical systems that is useful across a range of physical scales. Real

fluids are composed of on the order of 1023 particles (molecules) per kilogram. Physics, engi-

neering, and graphics applications may use on the order of 105 up to 107 particles to achieve

sufficiently realistic simulations [10, 11], depending on the specific application. Particle sys-

tems are also commonly employed in game engines that must support liquids and soft bodies

alongside rigid bodies highly efficiently, to allow for user interactions in real time, even on

small mobile devices. A small number of particles (103-104) can achieve sufficiently accurate

and stable simulations for the purposes of many computer and mobile games. Here, by con-

trast, we show that human data is best-accounted with on the order of a hundred particles, 102,

or even fewer. Thus brains may have evolved representations for intuitive simulation of fluids

similar to those used in contemporary computer simulations, but trading off accuracy for

computational efficiency to an extreme that goes well beyond even the most severe short-cuts

taken in conventional engineering applications.

Background of related research

We study the judgments people make about complex physical dynamics—liquid flow—in rich,

realistically rendered scenes. This is very different from the highly simplified and abstract sti-

muli studied in some of the classic work on intuitive psychology in the cognitive psychology

literature. Also, our focus on people’s ability to make sophisticated quantitative physical pre-

dictions in complex everyday scenes [3, 7] may appear incongruous next to classic studies of

intuitive physics that emphasized ways in which people’s judgments about simple scenarios of

objects in motion can be inconsistent with even very basic principles of Newtonian mechanics

[12]. In part this is just a difference in emphasis: We are interested in explaining how people

make successful predictions in complex everyday interactive settings, capacities that no robot,

computer vision or AI system currently comes close to, rather than the mistakes people make

in much simpler settings which are important for formal physics education but not necessarily

for everyday physical interaction with the world. It is important to note, however, that even in

previous work which emphasized the failures of people’s physical intuitions, it was often the

case that a majority or plurality of participants’ judgments in many of the classic studies were

consistent with Newtonian principles or approximate Newtonian simulations [12–15]; it is

just the striking patterns of error which occurred in some cases that were presented as the
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main findings. With some exceptions [13], the classic literature often focused on textbook-

style problems, typically presented with static, illustrated diagrams, and requiring participants

to draw out future trajectories on paper. In contrast, recent literature has focused on more per-

ceptual and perceptual-motor judgments, typically with rich dynamic displays and implicit

inferences about what will happen next over short time scales (but see also, e.g. [16] for older

examples). Recently, [5] even replicated [17]’s results showing that people’s drawings of pre-

dicted ballistic motion are often very inaccurate, but found that when those same participants

were tasked with an interactive task of intercepting a moving object or releasing it to fall with a

desired trajectory, their predictions were consistent with Newtonian dynamics. Most relevant

to the present work, [14] found that subjects were better at judging the trajectory of water exit-

ing a hose than a ball exiting a curved tube, hinting toward a crucial difference in physical pre-

dictions with fluids when people can access representations they have developed from their

everyday interactions.

These and other findings [18] are beginning to coalesce on an explanation of why people’s

physical intuitions appear to vary greatly in their accuracy: higher-level, deliberate reasoning

about physics differs markedly from physical knowledge available to lower-level perceptual

and motor systems. We speculate that higher-level systems, which are more flexible, not spe-

cific to physical reasoning, and based more on learning, may not benefit from the perceptual

conditions and reward incentives that give rise to accurate physical knowledge in lower-level

systems. Hence, our underlying hypothesis is that there are multiple systems supporting physi-

cal scene understanding, one of which is physical simulation. The purpose of this work is not

to explore the boundaries between the different cognitive mechanisms for understanding

physical systems, but rather to provide the first examination of mental simulation as an

account of people’s ability to predict fluid flow in realistic situations, and to develop computa-

tional models of these simulation abilities that can capture to a reasonable first approximation

how people might make these predictions.

Previous artificial intelligence research on reasoning about fluids has often pursued qualita-

tive [19–23] or logical [20, 24] approaches, which are computationally efficient, and were

developed prior to more recent hardware and algorithmic advances that support fluid simula-

tion in real-time on mobile devices. Qualitative and logical models have been especially useful

in situations that ask for explicit reasoning about a range of physical systems that people do

not have much direct perceptual-motor experience with (such as thermodynamic or hydrody-

namic systems or electrical networks). More recently, [20] developed a system of reasoning

using first-order logic to draw conclusions about transferring liquid from one container to

another in theoretical, two-dimensional scenarios. A key advantage of this approach is that it

can be applied even when no numerical information about container geometries, relative dis-

tances, initial conditions or volume of the water, pouring speed, etc. is available. At the same

time, however, it is unclear how these qualitative or logical models could account for the fine-

grained quantitative judgments that participants make in the perceptual settings we study

here. A final class of classic AI approaches to intuitive physics is analogical simulation, e.g.,

[25] devised an analogical particle-based fluid simulator, whose particles “communicate” with

each other based on a set of eight rules (see Fig 4C). This approach combines some aspects of

qualitative reasoning and quantitative, physics-engine-based simulations, and can be seen as a

simpler, more heuristic version of physically based simulations. Most recently, deep neural

networks have been proposed as a very different approach to making physical predictions on

short time scales [26]. Both analogical simulation and neural network approaches can be

applied to our tasks, and we evaluate simple versions of both on our experimental data, in

addition to the more quantitative approximate simulation models we have focused on.

Modeling human intuitions about liquid flow with particle-based simulation
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Proponents of qualitative approaches have also argued that solving problems that involve

predicting fluid motion “to a high degree of accuracy involves computational fluid dynamics”

and “it is quite unlikely that we are capable of performing such a prodigious feat mentally”

[27]. But it is still unclear to what extent qualitative approaches can account for people’s

sophisticated capacity for understanding and interacting with a wide variety of fluids and

fluid-like materials in everyday settings. Furthermore, there are strong reasons to believe fluid

simulation in the brain is not prohibitively expensive. Particle simulations can be run in paral-

lel on GPUs, and as we argue here, the brain may be able to get by with just a coarse approxi-

mation for its purposes. Such simulations require computation that is on par (or less) than that

used by today’s deep neural networks for computer vision [28], which are thought to be rea-

sonable models of parts of biological visual processing [29]. In addition, [30]’s recent “interac-

tion networks” and [31]’s “neural physics engine” models introduce neural networks which

operate on objects and relations, and can learn very accurate quantitative physical simulators

from data. In light of this, as well as the mounting evidence that human predictions and infer-

ences about rigid physical objects is supported by simulation, we believe it is plausible that

humans perform quantitative simulations, and not justifiable to dismiss this possibility out of

hand.

Some psychological work in vision has looked at how humans perceive liquid viscosity, and

has also been skeptical of the sort of computations we propose. For example, [32, 33] argue

that perception of liquids relies on superficial cues, and show that people use certain statistical

motion cues to predict viscosity. Furthermore, they argue that, “Given that the liquid image

motion is a result of. . .complex physical processes, it seems practically impossible for the visual

system to infer the underlying physical movements of particles from observed movements

using inverse optics computations.” We do not disagree that surface appearance cues can be

important in how people perceive liquid properties. However, such cues alone cannot directly

explain how people can predict the motion of liquids, which is the focus of our experimental

work.

The remainder of this paper is organized as follows. We first present our simulation model

and the particle-based simulation method it uses, followed by several alternative models,

including simpler simulation alternatives, as well as deep neural networks. We then present

Experiment 1, which demonstrates that participants are coarsely able to predict the complex

physics of both scenes involving low-viscosity liquids (e.g., water) and scenes involving high-

viscosity liquids (e.g., honey), and explores the roles of damping (see Intuitive fluids engine)

and uncertainty in our model’s correspondence to participants’ judgments. Experiment 2 then

focuses more directly on people’s sensitivity to viscosity. Finally, we discuss implications of

both experiments and directions for future work.

Fig 4. Gravity heuristic. (A) Each panel depicts the path of a different particle. (B) Depiction of ‘momentum’ (left) form = 0.1, and ‘global

noise’ with g 6¼ 0 (right), for a single particle that has chosen the “wrong” direction (going against gravity). See text for details. (C) Visualization

of model from Gardin and Meltzer (1989). The simulated fluid (blue cubes) travels straight down under gravity, which is analogous to A.

https://doi.org/10.1371/journal.pcbi.1007210.g004
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Materials and methods

Ethics statement

All subjects gave informed consent and were treated according to protocol approved by MIT’s

IRB (COUHES 1011004131).

Models

Physical simulation. Smoothed-particle hydrodynamics. Our computational cognitive

model is built on a particle-based approach to simulating fluids. We define simulation as a pro-

cess that applies fixed rules iteratively, over a sequence of steps, to approximately predict a sys-

tem’s state over time. The specifics of the simulation algorithm in our model is not crucial to

our theory; it implements the general principles that a fluid’s density is approximated as parti-

cles, that dynamics of the fluid correspond to the approximately Newtonian dynamics of the

individual particles, that the fluid properties (e.g., viscosity, stickiness, etc.) are distinguished

by different rules for how the particles interact, and that prediction precision and computa-

tional resource demands trade off by varying the numbers of particles, temporal resolution of

the simulated time steps, and complexity of the particle dynamics and interaction rules.

There are various classes of fluid simulators one could choose, such as volumetric, particle-

based, or more qualitative, which all have in common the property of a time step. Within each

broad class, there are various possible implementations. As a starting point, here we choose to

explore one particular particle-based method. One possible concern regarding the cognitive

plausibility of fluid simulation models is the choice of time-step resolution. The particular

implementation we use requires a relatively fine time step for stability (0.0002 seconds). (Spe-

cifically, we followed [34], with a few exceptions. First, we do not implement their boundary

conditions, and instead use a rigid-body physics engine to handle particle-boundary interac-

tions (as discussed below). Second, we use naive time-step updates for the particle states, rather

than the more complex “leap-frog” scheme.) But others have implemented stable simulations

with the same method using a substantially larger time step of 0.01 seconds, which is sufficient

for real-time user interaction with hundreds of particles on a mobile device. Other particle-

based simulation methods achieve stability with similarly large time steps [35].

Here we use smoothed-particle hydrodynamics (SPH) [36], a method from computational

fluid dynamics, as the core algorithm for our model. SPH is used widely in graphics and video

games for approximating the dynamics of many types of compressible and incompressible flu-

ids (e.g., liquids and gases). The state of the fluid is represented by a set of particles at discrete

time steps. Each particle carries information about a volume of fluid in a particular locality in

space, including its position, velocity, density, pressure, and mass. On each simulation time

step, the particles’ densities and pressures are computed, which are then used to update the

accelerations, velocities and positions. A particle’s density is calculated by interpolating its

neighbors’ densities, weighted by their distances, ri ¼
XNi

j¼1

mWðrij; hÞ, where ρi is the density at

particle i’s location,m is the mass of each particle,W is the kernel function, and rij is the dis-

tance between particles i and j (Fig 3A). The weighting is determined byW, which has a cutoff

radius, h, beyond which particles have no influence. After computing particle i’s density, its

pressure is updated, followed by particle-particle friction damping forces (analogous to viscos-

ity). Its acceleration is a linear combination of the pressure and damping, the velocity update

is proportional to the acceleration, and the position update is proportional to the velocity.

The precision of the liquid simulation can be adjusted by how many particles are used: with

more particles, the simulated liquid’s movement is more closely matched to that of a real liquid

Modeling human intuitions about liquid flow with particle-based simulation
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(Fig 3B). But increasing the number of particles also increases the computational cost of the

simulation, thus effecting a trade-off between efficiency and accuracy.

Intuitive fluids engine. Our simulation-based cognitive model, which we term the “intuitive

fluids engine” (IFE), is analogous to [3]’s intuitive physics engine (IPE), but is capable of pre-

dicting a fluid’s dynamics. It posits that when the brain observes the initial conditions of a

physical scene that contains fluids, it instantiates a corresponding particle-based simulation

(i.e., SPH) to predict future states of the scene. SPH comprises a family of related particle-

based algorithms, and our implementation is similar to the most popular versions. Our model

takes as input the configuration of the scene, including the solid elements and the fluid’s spatial

state and material attributes, such as particle friction (α) and particle stickiness. The number

of particles, N, that are instantiated can be varied as a means of adjusting the computational

resources allocated to the simulation.

Inconsistency between people’s mental simulations and ground truth physics (or our mod-

el’s approximation thereof) may come from two different sources: perceptual uncertainty and

incorrect physical assumptions. We explored both of these possibilities in our model. Our task

required predicting how water will splash, falling under the full acceleration of gravity. Such

splashes are energetic and happen on small time scales, and therefore it should be difficult for

people to predict their details exactly. We suspect that people may somehow “slow down” the

fluid in order to try to predict splashes in more detail, or may simply underestimate the poten-

tial energy of the liquid. We explored this possibility by incorporating a damping term into the

IFE simulations. This term decreases the acceleration in each particle at every time step by a

fixed proportion, z, of that particle’s current velocity. That is, ait ¼ f
i
t þ zv

i
t, where i indexes

particles, t indexes time, a is acceleration, f is the standard SPH forces (as given by equations 6

and 10 in [34]), z is the damping parameter, and v is the velocity. The result is a liquid that falls

more slowly and splashes less energetically. Values of z were discretized to a spacing of 1.0 (i.e.

we simulated 21 different values of z between z = 0 and z = 20).

In prior work [37], the probabilistic component of the model was based on perceptual

uncertainty that randomly perturbed the initial position of the fluid and averaged the outcome

over many random draws, but did not consider potentially incorrect physical assumptions.

Here our model’s uncertainty is implemented by averaging the predictions made over a small

range of damping values (where σ represents the size of the range). Thus, σ = 0 represents a

deterministic IFE and σ 6¼ 0 represents a probabilistic IFE. In preliminary analyses, we also

found that adding uncertainty over the number of particles or the viscosity did not improve

model fits, and its overall impact on model predictions was limited compared to the damping

uncertainty proposed here. Note also that uncertainty in one parameter can often mimic the

effects of uncertainty in other parameters, so damping uncertainty may also capture certain

other sources of uncertainty that we have not explicitly tested. However, it may be fruitful in

future work to further explore potential sources of uncertainty.

In our simulations of the stimuli, a liquid was initially positioned at the top of the scene,

then moved downward under the force of gravity through a set of solid obstacles, and accumu-

lated in one or more containers at the bottom. In Experiment 1, the bottom was divided into

two equally sized basins, left and right. The model’s judgments, J, took values between 0 and 1,

where 0 represented all liquid flowing into the left basin, and 1 represented all flowing into the

right, i.e.: J = nright/N, where N was the total number of particles, and nright was the number

that flowed into the right basin. In Experiment 2, there was a cup positioned at the bottom of

the scene and J = 1 represented all the liquid accumulating inside the cup, while J< 1 indicated

some liquid collected in the bottom of the scene, outside of the cup. We also computed predic-

tions from a “ground truth” model which did not include uncertainty or damping, and which

used a single, deterministic simulation with a high number of particles and the correct
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viscosity, to predict the liquid behavior as accurately as possible. We emphasize, however, that

what we call ground truth here is still an approximation to true physics, but should in theory

be more accurate.

We created different SPH liquids with particle friction values that ranged from low (approx-

imating water) to high (approximating honey). However, high viscosity Newtonian liquids

behave differently than real honey, because they do not stick to surfaces (SPH particles collide

with obstacle surfaces as inelastic spheres, while real fluids have much more complex boundary

interactions). Fig 3C reports particle friction values, α, for various liquids. Our α corresponds

to that in the artificial viscosity term of [38]. In order to model non-Newtonian, sticky liquids,

we created a variant of the basic SPH liquid described so far, which implements particle sticki-

ness by damping the normal and parallel components of velocity for particles that are in colli-

sion with solid obstacles (Fig 3C, rightmost panel), where ‘normal’ and ‘parallel’ are with

respect to the obstacles surface. Due to the computational demands of running a wide range of

fluid simulations, we only considered two sets of sticky parameter values, chosen by hand a
priori to qualitatively match the visual behavior of the stimuli as closely as possible (details

below). The values for the two stickiness parameters varied slightly between Experiment 1 and

2, because in Experiment 2, we made the honey somewhat less viscous than in Experiment 1.

The space of possible sticky SPH liquids could in theory be further explored by varying the vis-

cosity in combination with the two parameters controlling the velocity damping. In fact, the

full parameter space could be considered as having five parameters (N, z, α, and normal and

parallel components of damping during collision), but note that adding stickiness to low-vis-

cosity fluids makes little physical sense, as the particles can slide easily past each other com-

pared to more viscous fluids. The result would be largely the same as water, but there would be

a layer of particles left stuck to obstacles. This behavior bears little resemblance to any known

liquid. Thus, we deem the chosen fixed values to be a sufficient starting point, and distinguish

sticky and non-sticky liquids as separate models for the purposes of presentation. All analysis

below involving the sticky liquid (“Model 1 honey”; see below) will use these fixed parameter

values for α and stickiness.

The above model parameters fall into two categories: those that control the fidelity of simu-

lation (σ, N) and those that determine the physics of the liquid (z, α, particle stickiness). Set-

tings for these parameters are discussed below, in Intuitive fluids engine parameters.

MarbleSim. We explored another physically-based, but computationally less-demanding

simulator, which was akin to representing the fluid as a handful of marbles. This simulator,

which we call “MarbleSim”, is identical to the IFE in that it instantiates particles to represent

the fluid. However, MarbleSim replaces the SPH forces with rigid-body interaction rules that

are standard in rigid-body physics engines. This reduces computational complexity (and simu-

lation time), because there are many fewer pairwise interactions to calculate between particles.

In MarbleSim, each particle is represented as a solid sphere that collides inelastically with

obstacles and other particles. The IFE simulator also instantiates particles as rigid spheres, but

is different in that it ignores particle-particle collisions, allowing them to pass through each

other. (Note, however, that the SPH forces will generally prevent particles from getting arbi-

trarily close.) Thus, particle-obstacle interactions are identical in both the IFE and MarbleSim,

but particle-particle interactions in MarbleSim do not involve SPH forces–particles instead

collide with each other as rigid bodies, similarly to the way marbles would. All collisions are

perfectly inelastic (i.e. particles do not bounce) in both MarbleSim and the IFE, as this is most

consistent with the behavior of liquids.

While particles in MarbleSim have a friction parameter that controls how easily they slide

past each other when they touch, this is not analogous to the particle friction in the IFE (α).

Furthermore, this parameter has very little effect on the simulation outcomes in our setting. In
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addition, stickiness, which we employ in SPH simulations, would make little physical sense in

MarbleSim, since the particles easily roll past each other, rather than cohering together as a

continuous substance. The result is qualitatively similar in behavior to simulations without

stickiness, but varies in outcome because of the layer of stuck particles “left behind” on the

obstacles. Thus, similar to the case of sticky, low-viscosity liquids addressed above, a “sticky

marble” simulation bears little resemblance to the behavior of either water or honey. However,

MarbleSim was still allowed to vary along two dimensions, N and z, which exactly match the

corresponding parameters in the IFE, and were allowed to vary along the same ranges of val-

ues. Also, we found that performance of the model improved when adding uncertainty over

damping, as we did with the IFE. The results reported below use the same value for σ as the

uncertain IFE.

Heuristic simulation. SimpleSim. We also explored a simpler kind of dynamic simulation,

which is comparable to the analogical models of [25] in the way it uses a set of deterministic,

recursive heuristics to form predictions. These heuristic rules are inspired by physics but are

not in any formal correspondence to physical dynamics. We add to these rules notions of

noise and momentum to produce a range of different “fluids”. This model class, which we call

“SimpleSim”, instantiates equally-spaced “particles” along the midline of the liquid’s starting

position and generates a path straight downward (in the direction of gravity). In the model’s

simplest form, when an obstacle is encountered, the path continues along the obstacle surface

until it can go straight down again. The direction to travel along the obstacle’s surface (left or

right) is chosen to follow the local gradient downward, with gravity (see Fig 4A). For example,

if the polygon edge that the particle collides with slopes down and to the right, the particle tra-

jectory continues down and to the right along the surface. More technically, a particle trajec-

tory consists of a series of line segments. Each time the particle changes direction, we solve

linear equations to find all intersections between the line representing the new particle trajec-

tory and all obstacle edges. The next collision point for the particle is detected by finding the

intersection with the highest y value. We also detect at what point the current trajectory will

cause the particle to lose contact with the obstacle, and begin a new trajectory segment at that

point (i.e. either to drop straight down at the obstacle’s most extreme left or right point or to

continue to “hug” the obstacle’s surface).

However, the model also includes two degrees of freedom that allow it to deviate from this

basic behavior. The first parameter is a ‘global’ noise parameter, g (ranging from 0 to 1), that

controls the probability of choosing the “wrong” direction when a particle encounters an

obstacle, such that the particle initially travels against gravity. For example, if the colliding

edge has a negative slope (down and to the right), the model may randomly choose to continue

up and to the left instead of down and to the right (see Fig 4B, right panel). A particle makes

this decision about whether to initially travel with or against gravity once per obstacle, upon

initial collision, and then continues in that same direction until it reaches the obstacle’s edge.

The second parameter,m (ranging from 0 to 0.2), is somewhat akin to momentum: a particle

does not immediately drop straight down upon reaching the edge of an obstacle. Rather, it

continues for a fixed distance in the same direction it was traveling, before dropping straight

down (see Fig 4B, left panel). The parameter value specifies the magnitude of this distance.

Intuitively, whenm is smaller, the model should make predictions closer to honey, which

clings more to the obstacles, and when it is larger, the model should make predictions closer to

water, which sloshes off with some momentum. Both parameters were discretized to 11

evenly-spaced values, and thus we calculated predictions for 121 total parameter settings. The

value ofm corresponded to the extra distance (in meters) traveled in the horizontal direction

(orthogonal to gravity). We chosem to correspond to the horizontal distance, instead of abso-

lute distance, in order to mirror real Newtonian physics, which separates vector quantities,
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such as momentum, into orthogonal components. Finally, we found that adding additional

uncertainty overm, in the same way as we did for the IFE and MarbleSim, modestly improved

fits with the data. See Results for details.

The model’s predictions were calculated by counting the number of “particles” that end up

on each side of the divider (or in the cup, for Experiment 2), as in the simulation models. The

model reported here used 100 particles, but the results do not depend crucially on the exact

number of particles, as the particles’ trajectories are completely independent and do not inter-

fere with each other.

Models without dynamics. We contrasted the simulation-based models above with two

alternatives that did not explicitly seek to simulate dynamic fluid motion: one (the “gravity

heuristic”) that is still in a sense a simulation model, but which runs a purely geometric simula-

tion, embodying the heuristic notion that gravity pulls all liquid particles down unless an

object blocks their path; and another that used a deep convolutional neural network [8, 39]

trained on thousands of examples similar to our experimental test conditions to predict the

task target as a pattern recognition problem.

Both of these alternatives are highly specialized to the particular task studied, and are

unlikely to generalize to liquid motion in even slightly different conditions (e.g., different

obstacle arrangements, different liquid properties), in contrast to the models above which

ought to generalize whenever the underlying physics being modeled is shared. However, they

represent reasonable and well-known competing perspectives on the general mechanisms of

human perception and cognition [40, 41], and offer advantages such as simplicity of computa-

tion and straightforward statements about the learning processes.

Gravity heuristic. Formally this model corresponds simply to the SimpleSim model with

m = 0 and g = 0. With these parameters set to null values, the model simply follows the geome-

try of the obstacles, and it makes the same predictions regardless of the liquid type. Thus, it

may be considered a simple, geometric heuristic, formalizing the prediction that particles

should continue to “go down” under gravity, without penetrating obstacles or showing any

momentum and the dynamics that come from that. We include this model in part because of

its connection to much earlier work on analog representations for intuitive physics (see Fig 4).

We also consider it to be an informative baseline comparison, as it is one of the simplest possi-

ble models that can perform this task.

Convolutional networks. As an alternative to explicit physical representations of liquid

dynamics, we also tested the possibility that people’s responses might be based on a simple

mapping from visual inputs to physical outcomes, using a deep learning model, in a similar

spirit to models of bottom-up visual cortical processing [29]. We replaced the top layer of a

widely used convolutional neural network [8], pre-trained on a very large collection of images,

with a linear output layer, and performed backpropagation [39] until convergence to learn a

regression from images to labels in a supervised fashion. We trained separate networks for

water and honey outcomes in each experiment, and refer to each as “water ConvNet” and

“honey ConvNet”, respectively. The dataset for the water ConvNet in each experiment con-

sisted of 10,000 randomly generated scenes, with target values in the range [0, 1] that corre-

sponded to the proportion of water that went to the right bin in Experiment 1, or in the cup in

Experiment 2 (as determined by a deterministic ground truth simulation with N = 100). The

network was not shown any intermediate fluid positions. The honey ConvNet in each experi-

ment was trained by fine-tuning the water model using *2500 training examples. All net-

works were trained in layer-wise stages to minimize overfitting, freezing all layers below layer

n, for n = [N, . . ., 1], where N is the total number of layers. That is, the first training stage

freezes all but the last layer, the second stage freezes all but the last two layers, etc. In addition,
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we augmented our training data with versions of the original images zoomed by random

amounts.

Experiment 1

Participants. All participants (N = 65) were recruited from MIT Brain and Cognitive Sci-

ences’ human participants database (composed of roughly half MIT students and employees,

and half local community members). All gave informed consent, were treated according to

protocol approved by MIT’s IRB, and were compensated $10/h for participation. All experi-

mental sessions were one hour long, and each participant ran in one session in one experi-

ment. All had normal or corrected-to-normal vision. Stimuli were presented on a liquid-

crystal display, which participants free-viewed from a distance of 0.5-0.75 m. They indicated

their responses by depressing a key on the keyboard, or by adjusting the computer mouse and

then clicking to lock in their choice.

Stimuli and procedure. In order to test people’s ability to predict the behavior of a liquid,

participants were presented with 120 virtual scenes, simulated in 3 dimensions (including

depth into the screen), with a simulated size of 1.0 m x 1.50 m. The scenes depicted a cylindri-

cal volume (diameter equal to 0.148 m) of liquid positioned above a randomly generated obsta-

cle course composed of fixed, solid objects and asked to predict what fraction of the liquid

would flow into each basin below the obstacles under gravity. Participants were randomly

assigned to one of two groups: one group was presented with a low-viscosity, water-like liquid

(Experiment 1a), the other with a high-viscosity, honey-like liquid (Experiment 1b). The

scenes’ geometries were automatically generated as described below. During practice trials (see

below), participants viewed videos of the simulated liquid falling under gravity, rendered at 30

Hz using Blender’s (www.blender.org) Cycles ray-tracer. All moving liquid videos were simu-

lated using Blender’s Lattice-Boltzmann liquid simulator (see S1 Appendix for simulation

details). Lattice-Boltzmann methods are very different from SPH, a choice intended to elimi-

nate the possibility that our model would only capture people’s judgments because the scenes

were generated using a similar fluid simulation algorithm. All participants were presented

with the same, randomly shuffled scene order. The 120 trials were divided into three blocks of

40, with a short break in between. Both Experiments 1a and 1b included a practice and test

phase.

On each trial (in both practice and test phases), participants viewed an image of the scene,

with the liquid in its starting position. They were instructed to predict the proportion of liquid

that would end up on each side of the divider (see the dark wedge at the bottom of the stimuli

in Fig 2A), and to indicate their judgment by moving a virtual slider with the mouse left or

right, then pressing ENTER to submit. [See online supplementary material for stimuli videos.]

During the practice phase, comprised of 15 trials, participants received visual feedback after

submitting their response on each trial. During feedback, subjects saw a rendered video of the

liquid flowing through the obstacles (4 seconds for water and 10 seconds for honey; made in

Blender, as described above). The practice phase was designed to familiarize participants with

the characteristics of the liquid and the response procedure.

Random scene generation. The obstacles in the test scenes were generated automatically by

first dividing a plane into polygonal cells using 2D Voronoi tessellation, then selecting a ran-

dom subset as solid obstacles such that the total area approximately summed to 0.12 m2.

Coarse SPH simulations were run to filter out those scenes in which liquid particles remained

trapped in obstacle concavities or had little interaction with the obstacles.

Intuitive fluids engine parameters. We partition the parameter space into three distinct

classes of liquids–non-sticky (“water”), sticky (“Model 1 honey”), and highly-damped (“Model
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2 honey”; see below). The water and honey classes correspond to the liquids in Experiments 1a

and 1b, respectively. For the water IFE we explored particle friction values of α = {0.01, 0.2, 2}.

The Model 1 honey IFE used α = 1.25 for Experiment 1 and α = 2 for Experiment 2. (As men-

tioned above, the Model 1 honey liquids also involved two extra parameters controlling sticki-

ness, which were fixed a priori to qualitatively match the stimuli in honey trials of each

experiment, respectively.) In total, the IFE has six sub-models: water, Model 1 honey, Model 2

honey, which could all be either deterministic or uncertain (by making σ zero or non-zero).

However, we only report results from the uncertain versions of these three fluid types, as they

had slightly higher correlations with the data across most of parameter space, but maintained

the same qualitative trends.

The number of particles used to represent the liquid was varied from 1 to 100. However,

with fewer than 15 particles in our settings, the assumptions of SPH are violated to an extent

that it cannot be considered to be a fluid simulation. We explored simulations with fewer parti-

cles in order to compare their predictions with people, and found them to have poor fits to the

data, and therefore we will not report those results. With greater than 100 particles, non-sticky

simulations converge to very similar outcomes. The model’s damping parameter was varied

from z = 0 (no damping) to z = 20 (high damping). The value of σ was 0 (i.e. no uncertainty)

for the deterministic IFE, and 4 for the uncertain IFE (but results were similar for other val-

ues). To compute predictions in the uncertain IFE for a particular value of damping, z, deter-

ministic simulation outcomes were averaged over damping values in the range [z − σ, z + σ].

Each model (deterministic and uncertain IFEs) made a single prediction for each scene and

unique setting of fluid parameter values (N, α and particle stickiness, z). The ground truth

models corresponded to z = 0, σ = 0, andN = 100 (for honey) or N = 200 (for water). The num-

ber of particles for honey ground truth was fewer than for water because as the number of par-

ticles is increased, the fluid behaves as if it were non-sticky. This is because only the particles in

contact with an obstacle have modified behavior, and so their impact on the overall dynamics

of the fluid diminishes as they become a smaller proportion of the total number of particles.

We chose N = 100 for ground truth, because during our search for a liquid that qualitatively

matched honey from each of the experiments, this is the number of particles we used. Thus, it

is the closest match we could find to the behavior of the stimulus fluid. Further work should be

dedicated to developing improved simulation methods to more accurately capture the dynam-

ics of sticky liquids, in a way that is independent of number of particles.

As mentioned above, we explored two alternative models to account for judgments about

honey stimuli. The first (Model 1) simulated honey as a high particle-friction and particle-

stickiness fluid, as described above. The second alternative (Model 2) simply corresponded to

the water IFE with high damping. Thus, Model 2 can be considered a subspace of the water

IFE. It was found empirically that these two models predict similar outcomes in our tasks, and

so we consider each as an alternative cognitive hypothesis. Model 2 honey may be especially

appealing from the standpoint of representational simplicity, as it replaces multiple parameters

related to stickiness and viscosity with a single parameter, damping.

Note, we did not consider mass to be a free parameter. We set density according to true

physical values (approximately), and these values were fixed a priori for water and honey,

respectively. In the model, each particle is assigned a mass, but the choice of this value only

determines the scaling: giving the particles larger mass means that the equilibrium distance

between particles will increase to compensate, yielding fewer particles per area.

We ran simulations to exhaustively explore all combinations of parameter values across the

full range of values considered for each parameter. To avoid over-fitting, in general, we chose

parameters based on Experiment 1, and fixed them to these values for Experiment 2 (see

Table 1). Further, we fixed our parameters in a stratified manner, starting by finding the best
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value for N, then fixing N to this value while searching for the best values for α and z. More

specifically, to choose N, we took the average between the best-fitting number of particles for

Experiment 1 water trials (with the water IFE) and Experiment 1 honey trials (with the Model

1 honey IFE), which was N = 50. (Best-fitting values for water and honey trials independently

were N = 25 and N = 75, respectively, but fits were similar across the range from N = 25 to

N = 75 in both models.) With N fixed, we then found the best-fit α value for the water IFE on

Experiment 1a responses. Next, with N and α fixed, we found the best z for the water IFE on

Experiment 1a responses. All IFE models, across both experiments, shared the same N, as

found above, and the water IFE in Experiment 2 inherited its parameters from Experiment 1.

Model 1 honey inherited N and z from the water IFE, but used the α that was appropriate for

honey. Model 2 honey inherited N and α from the water IFE, but fit z using responses from

Experiment 1b. The final parameter choices for the water IFE were N = 50, α = 0.01, and z = 5.

The damping value for Model 2 honey was z = 11. Note that α = 0.01 was also the most physi-

cally accurate value of α for water. Finally, also note that there was no α value to fit for Model 1

honey, as it was not allowed to vary.

Experiment 2

For some model parameter settings in Experiment 1, both water and honey models made simi-

lar predictions, which limited the model’s ability to assess people’s sensitivity to viscosity and

stickiness. In Experiment 2, we designed new stimuli to elicit highly different outcomes

between low- and high-particle-friction and stickiness IFE simulations. See Fig 5 for examples

of Experiment 2’s more strongly contrastive stimuli.

Stimuli and procedure. We generated new random scenes and automatically selected

scenes for which the model’s predictions for honey versus water would be anti-correlated. This

would allow us to more directly examine whether our model could explain people’s sensitivi-

ties to the different liquids’ physical properties. We also modified the task from Experiment 1,

by removing the basin divider and instead placing a cup at the bottom of the scene (see Fig

2B). Participants judged what percent of the liquid would end up in the cup, which was a third

of the width of the scene, and could be at one of five evenly-spaced locations along the bottom.

By varying the cup location and making the width less than the basins in Experiment 1, we

could more easily create strongly anti-correlated scenes. Each scene consisted of 3 obstacles,

which could either be an equilateral triangle, square, or circle, and varied randomly in size

(within a specified range) and position.

Table 1. Summary of the model parameters used in Figs 7 and 8. The same set of parameters was used to model both experiments (with the exception of α in IFE honey

models, which was fixed a priori).

Model N α z σ sticky m g
Water IFE 50 0.01 5 4 No N/A N/A

Honey 1 IFE 50 1.25(Exp. 1)/2.0(Exp. 2) 5 4 Yes N/A N/A

Honey 2 IFE 50 1.25(Exp. 1)/2.0(Exp. 2) 11 4 No N/A N/A

Water MarbleSim 25 N/A 2 4 No N/A N/A

Honey MarbleSim 75 N/A 6 4 No N/A N/A

Ground truth water 200 0.01 0 0 No N/A N/A

Ground truth honey 100 1.25(Exp. 1)/2.0(Exp. 2) 0 0 Yes N/A N/A

Water SimpleSim N/A N/A N/A 4 N/A 0.1 0.1

Honey SimpleSim N/A N/A N/A 4 N/A 0.04 0.0

Gravity heuristic N/A N/A N/A N/A N/A 0.0 0.0

ConvNet N/A N/A N/A N/A N/A N/A N/A

https://doi.org/10.1371/journal.pcbi.1007210.t001
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All 21 participants saw 120 trials (60 water and 60 honey). Each participant saw the same 60

scenes for each liquid type, but all honey trials were mirrored with respect to water, to ensure

they weren’t recognized. The honey stimulus in Experiment 2 had a lower viscosity than that

of Experiment 1. (Experiment 1 honey was meant to be as different as possible from water, to

try to elicit different participant responses. Experiment 2’s honey was designed to be more

Fig 5. Example scenes from Experiment 2 for which water and honey trials had very different outcomes. (A) A

scene in which much more honey flowed into the cup than water. (B) A scene in which much more water flowed into

the cup than honey.

https://doi.org/10.1371/journal.pcbi.1007210.g005
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typical of honey encountered in everyday situations, to draw on prior knowledge of how it

behaves.) The honey model whose simulation parameters were most closely matched to the

stimulus liquid also had a lower viscosity (α = 1.25) than that of Experiment 1 (α = 2).

Results

Experiment 1

We first asked: How accurate are participants’ predictions about flowing liquids? In all analyses

we calculated the means across participants’ judgments for each scene, and estimated Pearson

correlations between those mean judgments and each model’s predictions as a measure of how

well the model fit the human data.

In Experiment 1a, the correlations between the mean participant responses and the water

and honey ground truth models were r = 0.76[0.74, 0.78] and r = 0.83[0.81, 0.84], respectively

(the interval in brackets is a 95% CI, estimated by a bootstrap analysis with 10, 000 resamples

[42]). This is somewhat surprising because one would expect water simulations to better

account for judgments about water than honey simulations (see Experiment 2). By contrast,

Experiment 1b showed that participants’ judgments about water and honey were best-

explained by their corresponding ground truth models: r = 0.48[0.43, 0.53] for water ground

truth and r = 0.73[0.69, 0.76] for honey ground truth.

Importantly, our results show a significant correlation (two-sample Kolmogorov-Smirnov

p< .0001) between individual participants’ judgments and the ground truth in all our experi-

ments (see Fig 6). The null hypothesis was generated by drawing random samples from a beta

distribution fit to participant data, which captured the variance of their judgments but not

any stimulus-specific structure. This result shows that participants cannot simply do well by

chance.

Next we asked: How well are participants’ judgments explained by the IFE models versus

alternative models? Overall, the results show that the IFE did well in explaining the data, but

we also found that the honey IFEs (and honey ground truth) did moderately well in accounting

for responses on water trials. Thus, from Experiment 1 alone, it is not clear to what extent peo-

ple were sensitive to the different fluid properties. In addition, our alternative models also per-

formed moderately well in some cases, compared to the IFE. Experiment 2 addresses both of

these issues. Experiment 1 scenes were not designed to guarantee that honey and water

resulted in very different outcomes, and thus responses for water versus honey in many scenes

should be similar. In Experiment 2, we design scenes for which water and honey simulations

have maximally different outcomes, and therefore, if people’s predictions are sensitive to dif-

ferent liquid properties, we should be able to detect this. Furthermore, the Experiment 2 scenes

are a more stringent test of the alternative models, whose physics do not as closely match the

ground truths for water or honey as the IFE’s does.

Correlations between the data in Experiment 1a and uncertain IFE were r = 0.92[0.91,

0.93], r = 0.76[0.74, 0.78], and r = 0.81[0.79, 0.82] for water, Model 1 honey, and Model 2

honey, respectively. Experiment 1b had correlations of r = 0.74[0.71, 0.78], r = 0.79[0.76, 0.83],

and r = 0.86[0.83, 0.88] for water, Model 1 honey, and Model 2 honey, respectively. These cor-

relations are summarized in Fig 7. Fig 8 summarizes how IFE fits vary across different values

of z and α.

The IFE outperformed all alternative models in Experiment 1a, but was slightly outper-

formed by MarbleSim in Experiment 1b. MarbleSim was also highly competitive in water tri-

als. SimpleSim was somewhat competitive in water trials and highly competitive in honey

trials, and the gravity heuristic was competitive on honey trials, but less competitive in water

trials. Table 2 summarizes the numerical results of the alternative models, which are also
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depicted visually in Fig 7C (with the exception of the gravity heuristic, which is shown in Fig

9). Table 2 also summarizes the agreements between alternative models and the ground truth

predictions for each liquid.

MarbleSim’s best-fitting parameter values for water and honey trials respectively were

(N = 25, z = 2) and (N = 75, z = 6). Both N and z were fit independently for water versus honey

trials. We will refer to these best-fit parameter values as “water MarbleSim” and “honey Mar-

bleSim”, respectively. SimpleSim’s best-fitting parameter values for water and honey trials

respectively were (g = 0.1,m = 0.1) and (g = 0.0,m = 0.04). Both g andmwere fit independently

for water versus honey trials. We will refer to these best-fit parameter values as “water Simple-

Sim” and “honey SimpleSim”, respectively. To implement SimpleSim’s uncertainty overm,

which was analogous to the IFE’s and MarbleSim’s uncertainty over z, we average model pre-

dictions over the range [m − σm,m + σm], where σm/(mmax −mmin) = σ/(zmax − zmin), and max

and min represent the maximum and minimum values explored for those parameters. Thus,

sincemmin = 0,mmax = 0.2, zmin = 0, zmax = 20, and σ = 4, then σm = 0.04. Here, we only report

results for this value of σm.

Fig 6. Distribution of individual participant correlations with ground truth (dark colors) versus the null

hypothesis (light colors).

https://doi.org/10.1371/journal.pcbi.1007210.g006
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The ConvNet was initially trained on the Experiment 1a ground truth (“water ConvNet”),

and a separate model (“honey ConvNet”) was then made by fine-tuning the original network

on a smaller number of honey ground truth simulations, in order to better capture human

judgments on Experiment 1b. As seen in Table 2, the water ConvNet successfully learned to

approximate ground truth predictions, but its correlation with people in water trials was com-

parable to ground truth itself. The honey ConvNet was less successful in learning the ground

truth, but its correlations with people in Experiment 1b were also comparable to those with the

ground truth. Like with the honey ground truth, the honey ConvNet’s predictions were highly

correlated with people in Experiment 1a. Experiment 2 further addresses this issue, by estab-

lishing whether people actually make different predictions for water and honey.

We also found hints that people’s predictions were sensitive to the physical attributes of the

liquids, which could be predicted by the IFE. In both Experiment 1a and 1b, participants were

Fig 7. Correlations between mean participant data and all models that make different predictions for water versus honey trials

(in both experiments). A and B show the IFE models and ground truth, while C and D show the alternative models (ConvNet,

MarbleSim, and SimpleSim). The alternative models exclude the gravity heuristic, as it makes the same predictions for both water and

honey. In Experiment 2, the bars with small or negative values (in B) establish that participants’ responses are sensitive to the

stickiness and viscosity of a liquid. Model 1 and Model 2 refer to the two different versions of IFE honey. Model 1 simulates honey as a

fluid with high particle friction and stickiness, while Model 2 simulates honey as water with high damping. Summary of parameters

for all models are found in Table 1.

https://doi.org/10.1371/journal.pcbi.1007210.g007
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at least partially sensitive to the physical attributes of viscosity and stickiness of each liquid: the

ground truth model whose particle friction and stickiness corresponded to Experiment 1a was

a better fit to Experiment 1a’s participants’ responses than those of Experiment 1b (see Fig 7).

Experiment 1b’s participants’ responses were better fit by the ground truth model with Experi-

ment 1b’s physical attributes. However, the fit between Experiment 1a responses and the

honey ground truth was quite high, an issue which we address in Experiment 2.

Fig 8. Uncertain IFE performance across a range of α and damping values at 50 particles. Results are qualitatively

similar to the deterministic IFE, but with higher correlations.

https://doi.org/10.1371/journal.pcbi.1007210.g008
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In both experiments, including damping in the simulation models improved fits with peo-

ple’s judgments. Furthermore, the uncertain IFE model had modestly higher correlations in

most cases than the deterministic IFE (results not presented here). However, future work

should further investigate the role of uncertainty in this kind of task. We also tested our

Table 2. Correlations between alternative models and subject data and the ground truth predictions.

Exp. 1

Data (water trials) Data (honey trials) Ground (water) Ground (honey)

Water ConvNet 0.76[0.74, 0.78] 0.52[0.46, 0.56] 0.91 0.69

Honey ConvNet 0.85[0.83, 0.86] 0.70[0.65, 0.74] 0.76 0.82

Water SimpleSim 0.75[0.73, 0.77] 0.66[0.62, 0.71] 0.56 0.60

Honey SimpleSim 0.68[0.66, 0.70] 0.76[0.73, 0.80] 0.38 0.60

Water MarbleSim 0.88[0.86, 0.89] 0.76[0.72, 0.79] 0.79 0.78

Honey MarbleSim 0.83[0.81, 0.84] 0.84[0.81, 0.87] 0.60 0.78

Gravity heuristic 0.58[0.55, 0.60] 0.73[0.70, 0.77] 0.19 0.53

https://doi.org/10.1371/journal.pcbi.1007210.t002

Fig 9. Comparison of the best-fitting versions of the IFE model and alternative models. All bars for the IFE,

MarbleSim, SimpleSim, and ConvNet are identical to their corresponding bars in Fig 7, and their values are given in

Table 1.

https://doi.org/10.1371/journal.pcbi.1007210.g009
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previously presented uncertainty model [37], which assumed veridical physics plus uncertainty

about the initial location of the fluid. We found this model to be more consistent with the data

than ground truth, but it did not account as well for the data as either the deterministic or

uncertain damped IFE models we present here.

In Experiment 1a, split-half correlations reveal participants were highly consistent with

each other (r = 0.96[0.94, 0.97]). Experiment 1b participants were less consistent with each

other (r = 0.81[0.73, 0.86]) than Experiment 1a, which might be attributable to less familiarity

with the liquid, since Experiment 1a participants saw a liquid that behaved similarly to real

water, but the liquid in Experiment 1b, while comparable to a highly viscous honey, was less

similar to most common liquids. In addition, real honey has highly variable viscosity, so any

experience people have with honey is less consistent than with water.

Experiment 2

Our results show that people’s judgments on trials of a particular fluid type were positively cor-

related with the appropriate model, and near zero or anti-correlated with the other fluid type

(see Fig 7B).

Correlations with the IFE model were calculated using the same model parameters from

Experiment 1. The correlations for participants on water trials were r = 0.57[0.48, 0.64] with

the water IFE, r = −0.10[−0.20, 0.01] with the Model 1 honey IFE and r = 0.08[−0.03, 0.19]

with Model 2 honey IFE. On honey trials, correlations were r = 0.00[−0.07, 0.08] with the

water IFE, r = 0.81[0.77, 0.85] with the Model 1 honey IFE, and r = 0.82[0.78, 0.86] with

Model 2 honey IFE. Correlations with ground truth for water trials were r = 0.41[0.35, 0.47]

and r = −0.03[−0.08, 0.03] for water and honey respectively. Correlations with ground truth

for honey trials were r = −0.69[−0.71, −0.68] and r = 0.69[0.68, 0.7] for water and Model 1

honey respectively.

As shown in Fig 9, the gravity heuristic and SimpleSim accounted just as well for honey

trial data as the honey IFE models, but were not as well correlated with water trials. Numerical

results for all alternative models are also summarized in Table 3, and visualized in Fig 7D.

Parameters for MarbleSim and SimpleSim were fixed to their corresponding values in Experi-

ment 1. Results show that, in contrast to Experiment 1, MarbleSim did poorly on honey trials

and SimpleSim did poorly on water trials, compared to the IFE.

As in Experiment 1, the ConvNet model was trained initially on water trials, and then fine-

tuned on a smaller number of honey trials, resulting in two separate networks. (Note that sepa-

rate networks needed to be trained for Experiment 2, because there was a cup rather than a

divider at the bottom.) The ConvNet results are shown in Table 3. Like Experiment 1, the

water ConvNet was quite successful in predicting ground-truth physics, but its correlation

Table 3. Correlations between alternative models and subject data and the ground truth predictions.

Exp. 2

Data (water trials) Data (honey trials) Ground (water) Ground (honey)

Water ConvNet 0.46[0.36, 0.55] -0.56[-0.62, -0.51] 0.91 -0.49

Honey ConvNet 0.13[0.03, 0.23] -0.00[-0.08, 0.07] 0.05 0.15

Water SimpleSim 0.22[0.12, 0.32] 0.58[0.52, 0.64] -0.40 0.49

Honey SimpleSim -0.06[-0.16, 0.05] 0.78[0.74, 0.82] -0.76 0.70

Water MarbleSim 0.56[0.48, 0.64] -0.16[-0.23, -0.09] 0.56 -0.08

Honey MarbleSim 0.33[0.23, 0.42] 0.41[0.35, 0.47] -0.09 0.54

Gravity heuristic -0.22[-0.32, -0.12] 0.79[0.74, 0.83] -0.89 0.81

https://doi.org/10.1371/journal.pcbi.1007210.t003
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with the water trial responses were still lower than the water IFE. By contrast, the honey Con-

vNet was not as successful in predicting the ground truth on our stimuli. We believe that this

is because the scenes we picked as stimuli were not drawn from the same distribution as those

in the ConvNet training set. Specifically, the stimuli were drawn from a skewed distribution,

which filtered for scenes with highly divergent outcomes for water versus honey, whereas the

training set as a whole was not. We believe this problem did not affect the water ConvNet as

much, because of differences in behavior between the water and honey. Honey may exhibit dif-

ferent “regimes” of behavior: if only a low proportion of the particles get stuck on an obstacle

surface, the simulation may have a very different outcome than if slightly more particles get

stuck. It is possible that with a very large training set, the network would be more accurate on

our honey stimuli. However, we stopped seeing incremental improvement when the honey

ConvNet test set (in both experiments) included more than about 25% of the full set of 10000

training examples.

The results of Experiment 2 show that people are sensitive to the physical parameters (both

stickiness and viscosity) of each fluid. Furthermore, our data show that people can accommo-

date their predictions systematically to different fluids with different physical parameters, but

they may do so in one of two ways: by adjusting parameters in the simulation corresponding

roughly to the physics, like stickiness and viscosity, or by approximating these physical varia-

tions using a single simple parameter, damping. The latter is cognitively appealing for its rep-

resentational simplicity, but needs further investigation as a candidate cognitive model.

But while participants had good fits with both honey IFE models on honey trials, the water

IFE model’s fit to participants’ responses was significantly lower than in the previous experi-

ment, and responses were less accurate with respect to ground truth. In addition, subjects’

split-half correlations were much lower (r = 0.72[0.53, 0.82], as compared to r = 0.96[0.94,

0.97] in Experiment 1 water trials, r = 0.81[0.73, 0.86] in Experiment 1 honey trials, and

r = 0.87[0.81, 0.92] in Experiment 2 honey trials). One potential explanation of this perfor-

mance gap is that the task was more intrinsically difficult, as the cup was less wide than each

bin in Experiment 1. That is, Experiment 2 scenes may require more precision in simulation

(i.e. more samples) to match the accuracy levels in Experiment 1. As a measure of how much

precision was required, we compared IFE prediction variance across tasks. That is, we looked

at the deterministic IFE predictions over a range of z values to see how much they varied. If

there is high variance, it means the model is less “certain” of the outcome, and therefore the

task is more difficult. The ranges of z examined were the same as those used by the uncertain

IFE in the results presented above (i.e. 1� z� 9 for water and Model 1 honey, 7� z� 15 for

Model 2 honey). Table 4 shows the mean variance across scenes for each experiment and IFE

fluid type. The mean variance for water in Experiment 2 was significantly higher than the

mean variances for the other two IFE models in both experiments (unpaired t-test, all p-values

near zero), supporting the notion that Experiment 2 water stimuli were intrinsically more diffi-

cult than the other three tasks. (Note that the human performance was higher on Experiment

1 (both water and honey trials) and Experiment 2 honey trials, but lower on Experiment 2

water trials, qualitatively matching the pattern of model variances.) However, further work

will be necessary to understand why the model had higher agreement with ground truth in

Experiment 2 water trials than human responses.

Table 4. IFE variance across experiments.

Water Honey (Model 1) Honey (Model 2)

Experiment 1 0.003[0.003, 0.003] 0.002[0.002, 0.002] 0.003[0.003, 0.004]

Experiment 2 0.014[0.013, 0.016] 0.001[0.001, 0.001] 0.009[0.008, 0.010]

https://doi.org/10.1371/journal.pcbi.1007210.t004
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Discussion

Here we introduced a computational cognitive model of how humans judge fluid dynamics in

complex everyday settings. Our proposed model, the “Intuitive Fluids Engine” (IFE), posits

that humans run particle-based mental simulations to predict how a fluid will flow in the

world. Our experimental results show that humans are able to make coarse, but often accurate,

predictions about fluid dynamics, and that these judgments are better explained by the IFE

than several alternative models, including simpler particle-based simulations and models that

do not explicitly simulate liquid dynamics. In two experiments, we found that people were able

to predict fluid flow in a range of novel environments with multiple obstacles, varied fluid

properties, and different task dynamics, appropriately taking into account complex geometric

structure and fluid properties such as stickiness and viscosity. Solving these prediction tasks

accurately would be very computationally intensive for an agent who has perfect knowledge of

the ground truth physics and attempts to model the fluid flow with high precision. Our model

explains the difference between this ideal and human performance as the result of several

approximations: human mental simulations use only a very limited number of particles to rep-

resent the fluid, and only an imperfect approximation to the physics inherent to all particle-

based simulators; in addition, particle momentum in mental simulations may be “damped” to

varying degrees, especially for more viscous liquids. More generally, the success of this model

is consistent with the broader view that many aspects of human intuitive physics can be under-

stood in terms of approximate probabilistic simulation [3], extending this thesis from an

account of how people understand and interact with simple rigid-body systems to much more

complex fluid systems.

A crucial feature of our IFE model is how coarsely it approximates the true physics of fluids.

Though our particle-based model is in the same family as SPH methods used for approximate

simulations in physics, engineering, computer graphics and video games, its details and imple-

mentation differ importantly from those used in other disciplines. The rules that govern the

particle-particle and particle-rigid interactions, the parameters of the simulated materials, and

the granularity of the mass density approximation are highly simplified relative to those used

in typical engineering applications, in ways that render the simulation non-veridical even

though it still looks reasonably natural. In particular, very small numbers of particles, by the

standards of typical SPH methods (e.g., 50 in our model, versus the hundreds of thousands or

millions of particles typical in graphics and engineering, or the thousands typical in video

games), gave the best fit to people’s judgments. And when simulating viscous fluids, a variant

of our model that lumps various “stickiness” parameters into a single damping parameter fits

human judgments well compared to the variant that keeps them separate. Though it requires

further exploration, representational simplifications like these may point toward ways that

human minds simulate complex real-world physics with cognitively plausible and efficient

computations.

The only exception to the general pattern of agreement between physical simulation and

people’s judgments occurred in the “Water” condition of Experiment 2, where a minority of

participants had no correlation with ground truth. Our analyses showed that trials in this con-

dition were objectively more difficult for a simulation-based approach than those in other con-

ditions, but it is also possible that there are interesting qualitative differences between these

trials to be explored further. Future work should more systematically investigate people’s pat-

terns of success and failures in predicting qualitatively different kinds of fluid motion, and we

expect that this will yield more insights into the nature of the computations and representa-

tions that people use in predicting fluid flow.
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A common critique of quantitative simulation-based cognitive models of intuitive physics

[27, 43] is they are impractical or unrealistic, due to the computation costs and the detailed

physical knowledge implicitly embedded in these simulation algorithms. The simulation-

based model we propose here should alleviate some of these concerns: Even extremely simpli-

fied simulations, with very coarse physical approximations, can nonetheless capture the fluid

dynamics well enough for everyday judgment purposes. At the same time, these models can

capture to a reasonable extent the surprisingly accurate quantitative predictions of fluid flow

that people are able to make.

The alternative models we presented aimed to provide a benchmark, against which to com-

pare the performance of our IFE results. We explored simpler, particle-based simulation mod-

els, and found that they captured certain aspects of people’s judgments, but no single model

could account as fully for people’s predictions as the IFE. Nonetheless, simpler simulation

models can do reasonably well here, which suggests that the brain may implement something

not quite as sophisticated as our IFE. Taken together, the success of our IFE and alternative

simulation models provides strong evidence for relatively sophisticated mental simulation in

people’s heads, but point toward the need to further explore simpler simulation alternatives

that are still sophisticated enough to account for the wide range of accurate predictions that

people can make.

Our SimpleSim model performed especially well on honey trials in both experiments,

achieving correlations similar to those of the IFE. A possible explanation for this success is that

honey is an easier fluid to simulate heuristically. Supporting this notion, SimpleSim in Experi-

ment 2 had a maximum correlation with the honey ground truth of r = 0.80 (occurring at

g = 0.1,m = 0.06), but with the water ground truth, the maximum correlation was just r = 0.20

(occurring at g = 0.0,m = 0.2). (Recall that Experiment 2 scenes were specifically designed to

elicit different outcomes for water versus honey, and are thus the best test of whether any

parameter setting of SimpleSim could approximate water, as compared to honey.) This result

makes intuitive sense, since both real honey and particles in SimpleSim tend to fall straight

down near obstacle edges, by contrast to water, which splashes energetically, in different and

less predictable directions. We believe that the moderate success of the heuristic simulation

model can be attributed in part to the above: it is intrinsically well-suited for simulating sticky,

viscous liquids falling under gravity. SimpleSim’s relative success in Experiment 1 water trials

can largely be attributed to its close agreement with honey ground truth physics, since honey

ground truth and honey IFE also had high correlations with those trials. Thus, the real test of

whether SimpleSim is a good model for water trials is Experiment 2, where it does poorly rela-

tive to water IFE, water ground truth, and water MarbleSim.

We also explored a non-simulation, neural network model that learned a fast mapping

between images of the starting configurations and the numerical outcomes. First, our neural

network model shows that it is possible for a connectionist architecture to learn an accurate

mapping from a still image representing initial conditions to a single number representing the

simulated outcome for our task. Since our networks were trained on ground truth physics,

they learned close approximations to the ground truth. It is perhaps unsurprising, then, that

they had similar correlations with human data compared to the ground truth simulations. If

people learn a similar kind of fast mapping between starting conditions and final outcomes,

our results suggest there may be other biases or constraints involved, which we have not cap-

tured here. (We also tested whether any intermediate points in training, prior to convergence,

resulted in higher correlations with subjects, and found this not to be the case).

Previous AI models for explicit reasoning about fluids (e.g. [20–23, 25]) have been studied

in fundamentally different contexts than those we examined here. For example, [21] and [22]

assume laminar flow that is highly constrained by container geometry (e.g. a piston cylinder).
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These models were designed to answer binary questions (Is the fluid flowing up or down? Is

pressure increasing or decreasing?), rather than to predict the location of liquid during or after

a splash. It is not clear how such qualitative or logical modeling approaches could be adapted

to the present experiment, which involves fluids in rapid dynamical flow, or whether they

could capture our participants’ quantitative judgments, but this is an important topic for

future work. Perhaps the most similar previous model is [25], which could be seen as a simpler

particle-based approach and in part motivated the gravity heuristic and SimpleSim models

here. Their approach may be adaptable to the present experiments, but it is not immediately

clear how to modify it such that it could distinguish between different liquids, such as water

and honey.

Future work should explore how the precision, temporal duration, and other structural and

parametric features of mental simulation for fluids might be implemented. For example, how

does the precision vary as a function of how far into the future one must mentally simulate?

[44] showed that for stability judgments, where the question is how far a fluid-containing ves-

sel can be tilted before the fluid spills out and only one-time step predictions are needed (in

contrast to our judgments here which required looking ahead many time-steps), IFE models

can be extremely quantitatively accurate as accounts of people’s judgments. How closely do

the attributes represented by the mind correspond to the actual physical characteristics of a liq-

uid? Physically accurate simulation models can account for people’s judgments, but we also

showed that a simpler simulation model (SimpleSim) also did reasonably well, even if the

more physically accurate simulation models did better overall. This raises the question as to

whether other simple simulation models may do better than SPH in accounting for people’s

judgments. In order to address this question, it is crucial to design good experiments that can

distinguish between different simulation models. For example, a simple extension to the cur-

rent work could be to find scenes that distinguish as sharply as possible between the predic-

tions of MarbleSim or SimpleSim and those of the IFE. In addition, using more dynamic and

interactive scenes, as well as varying how far ahead one must mentally simulate may be useful

in distinguishing between potential models.

Can our general approach extend to capture other classes of physical intuitions that go

beyond rigid-body dynamics? Particle-based models can provide reasonable simulations for

liquids and gases, as well as collections of solid elements (e.g., piles of sand) and composite

materials (e.g., mashed potatoes or Play-Doh) whose dynamics share similarities with liquids.

In fact, work by [45] provides preliminary evidence that particle-based simulation models can

capture people’s judgments about sand in a very similar task to the one we present here. What

are the limits of simulation-based models–what kinds of non-rigid dynamics can people make

coherent predictions about, and might some be better explained by alternative approaches

such as qualitative reasoning? Do people begin to use some form of qualitative reasoning as

simulation becomes too computationally demanding or in situations where they have insuffi-

cient prior experience? There is evidence that internal forward models in the motor system are

involved in predicting dynamics that cannot be reenacted by the body [46], which might help

explain how mental simulations are implemented. Establishing connections between such

work and our approximate simulation framework could lead to a deeper understanding of

people’s capabilities and limitations when simulating physics.

Another important question is: How could intuitive physics engines be represented in the

brain? [47] report fMRI evidence for physics-specific processing in an array of cortical regions

related to the “multiple demand” system. But no models yet have connected the computational

models to their neural substrates. Inspired by the recent successes of deep learning approaches

in AI, a plausible candidate might be a recurrent neural network with dynamic, parallel, and

distributed structure [48]. To date, neural network models have only been able to capture
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simple and restricted classes of rigid-body dynamics [26, 49], but as work on multimodal

image annotation, linguistic modeling, and more general purpose distributed algorithm learn-

ing systems (e.g., LSTMs [50, 51], the “Neural Turing Machine” [52]) advances, more richly

structured scenes and physical dynamics might become accessible to these frameworks. A

more general question for development, and computational cognitive psychologists is: Where

does people’s knowledge of liquids come from? Five month-olds can distinguish between sol-

ids and liquids in novel contexts after observing their distinct patterns of movement [53, 54],

which suggests either a very data-efficient experience-based learning process or innate biases.

Perhaps our simulation-based model’s core components can be measured in young children,

or its more complex features can be observed as they emerge and mature.

Approximate simulation is a powerful framework that may explain how people understand

a wide variety of complex physical processes they encounter in everyday life, such as rigids,

non-rigids, and fluids. This work offers the first computational model of how people make

intuitive predictions about fluids, and provides evidence that a particle-based simulation

model can account for human predictions about liquids with different substance attributes.
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