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Deep neural networks (DNNs) are state-of-the-art arti-
ficial intelligence (AI) systems providing impressive 
performance in a wide range of domains, such as visual 
perception, speech recognition, text-to-text language 
translation, and product recommendation. For example, 
in the domain of computer vision, a subclass of DNNs 
known as convolutional DNNs has consistently won the 
ImageNet Large Scale Visual Recognition Challenge 
(Russakovsky et al., 2015) in recent years. Although 
these networks have advanced the field of AI, it is an 
open question as to what insights, if any, these DNNs 
provide about human intelligence. Do they provide 
new insights into the nature of human thought and 
cognition? In this article, we address this question as it 
pertains to the domain of visual perception. Our main 
conclusion is that DNNs (more precisely, convolutional 
DNNs) provide a good starting point for the develop-
ment of comprehensive accounts of human visual per-
ception. To date, however, at least two factors—an 
impoverished set of training experiences and a lack of 

adaptations to capacity limits—prevent them from serv-
ing as better psychological models.

Overview of DNNs

Neural networks consist of interconnected sets of units 
(LeCun, Bengio, & Hinton, 2015). Some units are des-
ignated as input units, other units are output units, and 
still other units are “hidden” units. The goal of a net-
work is to map patterns of input-unit “activations” to 
target or desired patterns of output-unit activations. For 
instance, a network might map patterns representing 
visual images (e.g., images of vehicles) to patterns rep-
resenting category labels (e.g., a vehicle might be a car, 
truck, or bus). If an image contains M pixels, then the 
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network will contain M input units. When a particular 
image is presented to the network, the activation of 
each input unit is set to its corresponding pixel value. 
If there are N possible category labels, then the network 
will have N output units. The activation of an output 
unit might be an estimate of the probability that an 
image maps to the unit’s corresponding category.

Typically, input units are not directly connected to 
output units. Instead, input units connect to one or 
more layers of hidden units that, in turn, connect to 
output units. The activation of each hidden or output 
unit is computed in two steps. First, a unit computes 
the “weighted sum” of its inputs—it multiplies the acti-
vation of each unit that connects to it by an input-
specific weight value and then sums these products. 
Next, the unit maps its weighted sum to an activation 
value. This mapping is nonlinear. Additional details 
regarding DNNs are provided in Figure 1, and the sub-
class of convolutional DNNs is described in Figure 2.

The power of DNNs is that they are capable of learn-
ing and generalization. Networks learn by adapting the 
values of their units’ weights. Learning is typically 
supervised, meaning that a “teacher” has specified the 
target output activation pattern for each input activation 
pattern. During training, a network’s weights are modi-
fied to minimize its error or difference between the 
target output pattern and its actual output pattern. 
Learning rules for adapting networks’ weights often 
resemble Hebbian rules governing learning in biologi-
cal neural networks (Marblestone, Wayne, & Kording, 
2016). Following training, it is hoped that a network 
is capable of generalization, meaning that in addition 
to producing the target output pattern for each input 
pattern in the training set, it can also produce 

approximately correct output patterns for novel input 
patterns that are similar to the training set’s input 
patterns.

Comparison of Human and DNN Visual 
Perception

In this section, we provide a brief overview of some 
recent comparisons between people and DNNs, focus-
ing on their visual-processing strategies and perfor-
mances. Although there are important articles 
highlighting similarities in visual processing between 
people and DNNs (e.g., Battleday, Peterson, & Griffiths, 
2017; Kubilius, Bracci, & Op de Beeck, 2016; Peterson, 
Abbott, & Griffiths, 2016), here we emphasize articles 
pointing out differences because we believe that these 
differences are more enlightening. For brevity, we do 
not include neuroscientific comparisons between bio-
logical nervous systems and DNNs (e.g., Khaligh-Razavi 
& Kriegeskorte, 2014; Yamins et al., 2014).

Several articles have demonstrated differences in 
people’s and DNNs’ visual representations through the 
use of adversarial examples. These are images that 
people and DNNs classify correctly but, when per-
turbed in special ways that are imperceptible to people, 
are misclassified by DNNs. For example, Szegedy et al. 
(2014) found that a small perturbation of an image of 
a school bus caused a DNN to misclassify the image as 
depicting an ostrich. Adversarial examples illustrate that 
DNNs have nonhumanlike discontinuities in the space 
of their visual representations. (Interested readers 
should also see Elsayed et al., 2018.)

Other patterns of errors also indicate that people and 
DNNs use very different visual strategies and 

Fig. 1.  A single unit of a neural network and a network composed of several units. An individual hidden or output unit of a network (left) 
computes its activation in two stages. First, it computes the weighted sum of the activations of the units that connect to it (these activations 
are denoted x1, . . . xk; the weights are denoted w1, . . . wk; and the symbol Σ denotes summation). Second, it uses a nonlinear function 
f to map the weighted sum to an activation value y. Input, hidden, and output units are organized into input, hidden, and output layers, 
respectively, which form a network (right). Researchers need to make many choices when designing networks. How many layers should a 
network have? How many units should be in each layer? What should be the pattern of connectivity between units in one layer and units in 
subsequent layers? How should units map their weighted sums to their activations? What learning rule should be used to modify a network’s 
weights? To date, there are few mathematically principled ways of addressing these questions, and thus researchers rely primarily on intu-
itions gained through experience. 
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representations. Rajalingham et al. (2018) compared 
people’s and DNNs’ performance in visual-object cat-
egorization and found that they are similar when con-
sidered at a coarse-scale category level but markedly 
different when considered at a finer-scale image level. 
Lake, Salakhutdinov, and Tenenbaum (2015) reported 
that people were much better than DNNs at classifying 
images of letters on the basis of very few training exem-
plars. Ricci, Kim, and Serre (2018) found that people 
are very good at evaluating visual relations (e.g., Are 
the two objects depicted in an image the same or dif-
ferent?), whereas DNNs struggle at learning to make 
such evaluations. Erdogan and Jacobs (2017) reported 
that people and DNNs make different shape-similarity 
judgments on an image set depicting novel three-
dimensional objects lacking semantics.

People and DNNs seem to show different visual per-
formances under unusual or impoverished viewing 
conditions. Dodge and Karam (2017) found differ-
ences in people’s and DNNs’ responses to visual-object 
categories when images were distorted by added noise 
or blur. Geirhos et al. (2017) reported that people 
respond more robustly than DNNs to several types of 
image distortions. Hosseini, Xiao, Jaiswal, and Pooven-
dran (2017) showed that people, but not DNNs, were 
good at classifying negative images that have the same 
structure and semantics as regular images but with 
reversed brightness (i.e., in a negative image, bright 
pixels in an image appear dark, and dark pixels 
appear bright). Ullman, Assif, Fetaya, and Haran (2016) 
showed that people and DNNs have different “minimal 
recognizable configurations” (p. 2744), which are the 
smallest image patches that still permit an object to be 
recognized.

Taken as a whole, there are several factors account-
ing for the differences in visual performance between 
people and DNNs. People tend to be highly sensitive 
to three-dimensional shape features, whereas DNNs are 
more sensitive to two-dimensional image features. In 
addition, people’s responses to image distortions or 
reduced viewing conditions are more robust because 
they are better at using global information, such as 
image context or top-down knowledge.

Factors Limiting the Use of DNNs as 
Psychological Models

Consistencies between the visual performances of peo-
ple and DNNs suggest that DNNs are a computational 
framework providing a good starting point for the 
development of comprehensive accounts of human 
visual perception. Discrepancies, however, suggest that 
there is much more work that needs to be done. To 
date, at least two factors prevent DNNs from serving as 
better psychological models.

First, relative to people, DNNs receive impoverished 
training experiences. Whereas natural environments 
provide people with perceptually rich and dynamic 
experiences from which they learn to perceive the 
world, AI researchers typically train DNNs in a super-
vised manner using data sets of labeled static images. 
From a psychological perspective, there are at least two 
shortcomings with training in this manner. First, whereas 
DNNs receive explicit supervision from a teacher, peo-
ple in natural environments typically learn in a manner 
that involves no or little explicit supervision. Second, 
whereas DNNs are trained with static images, people 
learn in perceptually rich, dynamic, and interactive 
environments. The end result is that people and DNNs 
often learn different information. People tend to learn 
low-dimensional statistical regularities of visual envi-
ronments that give rise to visual stimuli and regularities 
that are informative for decision making and action 
selection. In contrast, DNNs tend to learn image fea-
tures that distinguish images of one category from 
images of other categories. In the future, DNNs will be 
better psychological models if they are trained in a 
more humanlike manner with more realistic data items.

More humanlike training can take place in at least 
three different ways. First, researchers can create data 
sets with a variety of visual cues, including cues to 
three-dimensional structure, such as motion parallax 
and binocular disparities. Scientists working with video 
already have data that include motion cues. A benefit 
of working with video is that it provides an opportunity 
to combine supervised and unsupervised learning—
there is no need for a teacher to label every video frame 
because a DNN could learn in an unsupervised manner 
by taking advantage of the temporal coherency of the 
three-dimensional structure across frames.

Second, researchers can create multisensory data sets, 
which could include both visual and auditory informa-
tion. Again, scientists working with video already have 
access to this information. And again, this would provide 
new opportunities for unsupervised learning—a DNN 
could learn statistical regularities that occur across 
modalities, using information from one modality to dis-
ambiguate information in another modality.

The presence of visual-auditory data sets raises an 
interesting question: Can an agent (biological or artifi-
cial) learn to perceive the world by watching television 
(which provides both visual and auditory information)? 
The fact that the answer is probably “no” motivates a 
third approach, one in which researchers develop data 
sets in which stimuli and actions interact in a continu-
ous loop—the current stimulus influences an agent’s 
actions, which, in turn, influence the next stimulus, and 
so on. Researchers developing software for virtual-
reality environments already have the means to gener-
ate data sets with perception-action loops. Although 



38	 Jacobs, Bates

virtual-reality applications would provide simulated (as 
opposed to real) data, they would serve as useful start-
ing points. Moreover, because objects in virtual reality 
are simulated, the objects could be fully labeled, 
thereby providing data for supervised training. Recent 
research using video games has explored perception 
and action learning when an agent interacts with a 
complex environment (Mnih et al., 2015). Interestingly, 
the DNNs used in this research were trained via rein-
forcement learning, not supervised learning, a training 
paradigm that is often regarded as more psychologically 
realistic.

A second factor limiting the usefulness of DNNs as 
psychological models is that DNNs rarely contain adap-
tations to capacity limits. People’s visual systems have 
limited processing powers. Consequently, we have 
evolved or developed mechanisms or strategies to com-
pensate for our own limitations. For example, because 
we cannot visually perceive and represent all aspects 
of a scene at all levels of detail, we often represent a 
summary, or gist, of the scene (Oliva, 2005). This rep-
resentation contains abstractions needed to grasp the 
scene’s meaning, to recognize a few objects and other 
salient properties, and to facilitate object detection and 
the deployment of attention. A second adaptation to 
our inability to simultaneously perceive the entirety of 
a scene is visual attention. Instead of attempting to 
perceive and represent all aspects of a scene at the 
same time, we often use a sequential strategy in which 
we perceive different task-relevant subsets of a scene’s 
properties at different moments in time. Consistent with 
this strategy, visual working memory is used to preserve 
and integrate task-relevant information obtained at ear-
lier moments to aid perception and action at the current 
moment (Ballard, Hayhoe, Pook, & Rao, 1997; Sims, 
Jacobs, & Knill, 2012).

To better account for human perception, DNNs will 
need to include capacity limits as well as mechanisms 
to compensate for these limits. Within the AI commu-
nity, this is beginning to happen. For example, research-
ers are developing DNNs that acquire low-dimensional 
or compressed representations (Kingma & Welling, 
2014), DNNs that use visual attention to perform tasks 
in a sequential manner (Eslami et al., 2016), and DNNs 
with recurrent connections or external memory to inte-
grate previously acquired information with new infor-
mation (Graves et al., 2016; Hochreiter & Schmidhuber, 
1997). These are early and promising steps toward more 
psychologically realistic DNNs.

Conclusion

DNNs have achieved impressive performance on impor-
tant visual tasks. However, such performance has often 
been obtained using simplified training procedures and 

data sets that were laboriously labeled by people. We 
believe that future progress will require AI researchers 
to use training procedures in which DNNs take actions 
in perceptually rich environments to achieve goals. We 
also speculate that future progress will require AI 
researchers to make DNNs more humanlike, including 
adding capacity limits and adaptations to these limits 
(e.g., visual attention, memory, and abstraction). For AI 
researchers, this research strategy will provide sophis-
ticated solutions to difficult perceptual and decision-
making problems. For psychologists, this strategy will 
provide advanced computational frameworks for imple-
menting and evaluating psychological theories in large-
scale realistic settings.
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