Action Potentials I
Generation

Reading:
BCP Chapter 4
Action potentials (AP’s) aka
- *Spikes* (because of how they look in an electrical recording of V_m over time).
- “*Discharges*” (descriptive of their gunshot-like explosiveness).
- *Impulses*.

An AP is a **brief reversal of the resting membrane potential**: the inside briefly becomes positive relative to the outside.

Propagation:
- APs are **self-regenerating**...
- ...and **propagate** along excitable membranes.
- **AP’s usually generated in axons**, not soma or dendrites (there are exceptions).
Membranes that generate APs are called “excitable” (found mostly in neurons and muscle fibers).

Voltage-gated ion channels underlie AP activity.

Action potential, squid giant axon (Hodgkin & Huxley 1939)
Characteristics of Action Potentials

- **AP** an *all-or-nothing* event:
 - AP amplitude essentially *constant* at all points on a membrane (as long as ion gradients remain stable).
 - No such thing as a “partial” or “fractional” AP.

- AP duration *very brief*: 0.5 – 2.0 ms.

- **AP** does not require energy: *Potential* energy, i.e. separation of charge across the resting membrane, is converted to *kinetic* energy, i.e. ion currents, when channels open to generate AP.
Action Potential Generation
Phases of a “Spike”

- Resting Potential (V_{rest})
- Threshold
- Rising Phase
- Overshoot
- Falling Phase
- Undershoot
- V_{rest}
Imagine a membrane at rest, only resting K^+ (K_{rest}) and Na$^+$ channels open (Na_{rest}), voltage-gated Na$^+$ (Nav) and K$^+$ channels closed:

When V_m below threshold for opening Nav channels:
- “Electrotonic” (steady-state) currents are carried mainly by resting K channels, i.e. $g_K >> g_{Na}$. Result: $V_m = -65 \text{ mV}$
- Nav channels closed when $V_m = -65 \text{ mv.}$
Threshold to open Nav channels is more positive (less negative) than V_{rest}.

When depolarized to Nav threshold, *inward* current through Nav channels just exceeds *outward* “leakage” current via open resting K channels.

Inward current depolarizes membrane further, opening even more Nav channels, causing *explosive amplification* of inward depolarizing current (*positive feedback* process)

Inward Nav channel current creates rising phase of the AP

<table>
<thead>
<tr>
<th>REST</th>
<th>THRESHOLD</th>
<th>RISING PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_{Na} \ll g_K$</td>
<td>$g_{Na} \sim g_K$</td>
<td>$g_{Na} \gg g_K$</td>
</tr>
</tbody>
</table>
AP is terminated by following mechanisms:

- **Nav “inactivation”:** At positive membrane potentials, Nav channels close, terminating depolarizing inward Na$^+$ current through these channels.
- Net outward leakage current via resting K channels
- Net outward currents via Kv channels
- **Falling phase:** $g_K >> g_{Na}$, so V_m rapidly repolarizes toward V_{rest}
Hodgkin & Huxley showed that outward currents are also activated by depolarization, attributed to voltage-gated $K^+ (K_v)$ channels.

K_v channel activation is slower and briefly delayed (~ 1 ms) relative to Nav channel activation (hence referred to as the “delayed rectifier” K_v channel).

Combined with K leakage through K_{rest} channels, outward (+) current moving through K_v channels accelerates repolarization of the membrane back toward V_{rest} during falling phase.

K_v channels slow to inactivate, so outward current persists for a while, creating the AP “undershoot”.

K_v channels de-inactivate when membrane repolarizes (like Nav channels).
Currents Shape Time Course of AP

- **Summed activity** of thousands of rapidly opening *Nav* channels and slowly opening *Kv* channels results in large **inward** and **outward** currents that are **out of phase** in time, shaping the biphasic voltage change of the AP.
Refractory Period

- Brief period (1-2 ms) *during* and *after* generation of the AP when membrane is unable, or less able, to generate another AP.

- Importance:
 - Affects the *duration* of the AP.
 - Sets upper limit of *firing rate*.
 - Prevents the AP from re-invading membrane that has just discharged, so that *AP propagates away from site of initiation*.
Absolute Refractory Period

- ARP is the time during AP overshoot when all available Nav channels are either open or inactivated.
- Threshold for generating another AP is effectively infinite.
Relative Refractory Period 1

- *Follows* the absolute refractory period.
- Associated with AP *falling phase* and *undershoot*.
- Caused by *prolonged outward K currents* through *Kv* channels (high-threshold, slow inactivating *Kv3.1* channels).
During RRP, threshold is elevated but not infinite.

Initiation of another AP during the RRP requires stronger supra-threshold depolarization that can open more Nav channels to overcome outward K currents causing the afterpotential (undershoot of V_{rest}).
Stimulus Strength and Firing Rate

- **Sub-threshold** inward currents are “graded”, i.e. proportional to the strength of the stimulus.
 - V_m depolarizes to a new steady state proportional to the magnitude of stimulus current (Ohm’s law in action).
 - Graded potentials can summate.
- **Supra-threshold inward currents** (via resting ion channels) may result in repetitive generation of APs.

![Diagram of neuron with injected current and membrane potential](image-url)
• *Supra*-threshold depolarization elicits AP due to activation of enough *voltage-gated* channels to exceed outward currents through resting channels.

• If depolarization is sustained above threshold, then *AP’s may repeat* as channels repeatedly cycle between open and closed states.
Stronger stimulus \rightarrow greater depolarizing current \rightarrow faster membrane reaches threshold to initiate another AP.

Firing rate increases with stimulus strength.

Firing rate is limited by the duration of the absolute refractory period.
Review

- An AP is a *brief reversal of the resting membrane potential*: the inside briefly becomes *positive* relative to the outside.
- AP an *all-or-nothing* event.
- AP phases are the result of differential activation of voltage-gated sodium and potassium (delayed rectifier) channels.
- There is a brief refractory period (1-3 ms) *during* and *after* generation of the AP when membrane is unable (absolute refractory period), or less able (relative refractory period), to generate another AP.
- Stimulus strength affects the firing rate of neurons.