Announcements

• No class on Tuesday – Happy Thanksgiving!
• Journals: turn in today

Touch

• Why touch?
• Detection of tactile sensations
• Cortical mechanisms of touch
• Plasticity of touch
• Proprioception
• Examples of touch research
• Super-touch in star nosed mole

Power of Touch

"My world is built of touch-sensations, devoid of physical colour and sound. Every object is associated in my mind with tactual qualities which, combined in countless ways, give me a sense of power, of beauty, or of incongruity...."

All palpable things are mobile or rigid, solid or liquid, big or small, warm or cold, and these qualities are variously modified. The coolness of a water-illy rounding into bloom is different from the coolness of an evening wind in summer, and different again from the coolness of the rain that soaks into the hearts of growing things and gives them life and body. The velvet of the rose is not that of a ripe peach or of a baby’s dimpled cheek....

What I call beauty I find in certain combinations of all these qualities, and is largely derived from the flow of curved and straight lines which is over all things.

Helen Keller (1880-1968)

Power of Touch

"My hand is to me what your hearing and sight together are to you. In large measure we travel the same highways, read the same books, speak the same language, yet our experiences are different. All my comings and goings turn on the hand as on a pivot. It is the hand that binds me to the world of men and women."

Helen Keller (1880-1968)

Ian Waterman

https://www.youtube.com/watch?v=n8kqV-HVzmo

How can one explain a total loss of touch & proprioception - a sense most people don’t even know they have?

He could feel nothing from the neck down. Nor could he feel his mouth and tongue. Not only couldn’t he feel anything, he had no idea of where the various parts of his body were without looking at them... he had no awareness of their position...

He could make an arm movement but he had no ability to control the speed or direction of the movement. If he turned his gaze away for a few seconds [away from looking at his arm] his arm would often come up and hit him or someone sitting close by.

He had difficulty chewing and had to be careful not to bite his tongue. He didn’t know if he had chewed enough, or if the food was in the right place at the back of the mouth to be swallowed.

Touch, Metaphorically Speaking

• “out of touch with reality”
• “tangible evidence”
• “sense of touch”
• “tactile situation”
• “tactful reply”
• “blunt statement”
• “handle with kid gloves”
• “thorny problem”
• “touchy person”
• “manual labor”
• “give me a hand”
• “hired hand”
• “handicap”
• “touché”
Touch In Our Social Lives

- holding hands
- caressing
- kissing
- giving a hand
- therapeutic touch
- slapping
- shaking hands (no weapons)
- patting backs
- creating sounds by touch
 - applause
 - snapping fingers
 - tapping foot
- touch taboos
 - cultural differences in touching
- subliminal touch
 - servers who touch get more tips

Importance of touch during development

- **Mother/Infant bonding**
 - In many species, mothers initiate frequent tactile contact with infants, by licking, nursing and guiding - this stimulates production of growth hormone
 - classic studies by Harlow on importance of touch for normal development in primate infants (separation studies)
 - considerable literature suggesting that mother/infant contact is crucial in human bonding
 - premature infants grow more rapidly if stroked/massaged; also are more alert and tolerate noise

- **Mothers can recognize their own newborns by tactile cues alone** (Kaitz et al, 1992 - Developmental Psychology, 28, 35-39)
 - mother wore blindfold and mask over nose
 - stroked back of baby’s hand using middle and index fingers, for no longer than 10 sec
 - did this with 3 asleep babies, one of which was the mother’s
 - mother guessed which was hers
 - **Result**: women who had less than 1 hr contact prior to test performed at chance; those with more than 1 hour contact were significantly above chance (70%)
 - mothers report relying on texture and temperature

Skin

- Skin is the largest organ in the body, both by weight and surface area. In adults, your skin accounts for about 16% of your total body weight.
- The skin serves many purposes:
 - serves as a barrier to the environment
 - protects us from water loss, friction, wounds
 - uses specialized pigment cells to protect us from ultraviolet rays of the sun
 - produces vitamin D in the epidermal layer when it is exposed to the sun’s rays
 - helps regulate body temperature through sweat glands
 - helps regulate metabolism
 - has aesthetic and beauty qualities
 - houses touch receptors

Touch

- Why touch?
- Detection of tactile sensations
- Cortical mechanisms of touch
- Plasticity of touch
- Proprioception
- Examples of touch research
- Super-touch in star nosed mole
“General” Sense of Touch

- **Discriminative touch** - perception of pressure, vibration, and texture; mediated by **four** different categories of **Mechanoreceptors** in the skin.

- **Pain and temperature** - free nerve endings throughout skin, muscle, bone, and connective tissue register changes in temperature and presence of pain.

- **Proprioception** - registration of tension and stress in muscles and joints, via receptors sensitive to stretching.

Discriminative touch: Types of Fibers

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>RA-Punctate</th>
<th>SA-Punctate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffuse</td>
<td>RA-Diffuse</td>
<td>SA-Diffuse</td>
</tr>
</tbody>
</table>

- **Rapidly Adapting (RA)** - respond to changes in stimulation, but do not continue to respond to constant stimulation.
- **Slowly Adapting (SA)** - respond to constant stimulation.
- **Punctate** - small receptive fields with distinct boundaries.
- **Diffuse** - large receptive fields with non-distinct boundaries.

Receptive Field: Sensitivity vs. Resolution

- **“punctate”**
- **“diffuse”**
- **ulnar nerve**
- **median nerve**
- **“slowly adapting”**
- **“rapidly adapting”**
Receptive Field: Sensitivity vs. resolution

The nerve fibers enervate **four receptor types**

<table>
<thead>
<tr>
<th>Slowly adapting</th>
<th>Rapidly adapting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merkel Disks</td>
<td>Meissner Corpuscles</td>
</tr>
<tr>
<td>constant sources of stimulation over a small area such as if you were carrying a pebble (shallow)</td>
<td>respond best to active touch involved in detailed object exploration (shallow)</td>
</tr>
<tr>
<td>Ruffini ending</td>
<td>Pacinian Corpuscles</td>
</tr>
<tr>
<td>constant stimulation over a larger area also detects skin stretch (deep)</td>
<td>extremely sensitive over a large receptive field blow gently on the palm of your hand (deepest)</td>
</tr>
</tbody>
</table>

How this works?

Step 1: mechanical stimulus (e.g., pressure) deforms receptors’ membrane.

Step 2: this starts a cascade of events that ultimately result in an action potential.

Case A: if the pressure is continuous, SA receptors (Merkel & Ruffini) keep “responding,” while RA receptors adapt (Meissner & Pacinian)

Case B: if the pressure is intermittently applied, all receptor types “respond”

Case C: if the pressure is very localized (e.g., pen point), punctate receptors respond (Merkel & Meissner)

Case D: if the pressure is distributed over a larger area of skin, diffuse receptors respond (Ruffini & Pacinian)

Why all this?
Touch

- Why touch?
- Detection of tactile sensations
- Cortical mechanisms of touch
- Plasticity of touch
- Proprioception
- Examples of touch research
- Super-touch in star nosed mole

Touch Pathways to the Brain

Cortical magnification -> The “Homunculus”

Relative cortical area devoted to different body regions (cortical magnification)
Rat barrel cortex - whisker representation

Sensory substitution and Touch

Brain port

“Sensory vest”

Touch

- Why touch?
- Detection of tactile sensations
- Cortical mechanisms of touch
- Plasticity of touch
- Proprioception
- Examples of touch research
- Super-touch in star nosed mole
Phantom Limb Phenomenon

"For the patients, long after the amputation is made, say they still feel pain in the amputated part. Of this they complain strongly, a thing worthy of wonder and almost incredible to people who have not experienced this..."

Ambrose Pare (French battlefield surgeon, 1510 - 1590)

"Look ye, carpenter, I dare say thou callest thyself a right good workmanlike workman, oh? Well, then, will it speak thoroughly well for thy work, if, when I come to mount this leg thou makest, I shall nevertheless feel another leg in the same identical place with it; that is, carpenter, my old lost leg; the flesh and blood one, I mean. Canst thou not drive that old Adam away?" "Truly, sir, I begin to understand somewhat now. Yes, I have heard something curious on that score, sir; how that a dismasted man never entirely loses the feeling of his old spar, but it will still be pricking him at times. May I humbly ask if it really be so, sir?"

Herman Melville (1819 - 1891), from Moby Dick

Phantom Pain

- After surgical removal of a limb, sensations resume in the limb
- In 90% of patients, the sensations are very painful
- In 60% the pain is excruciating: described sometimes as an arm on fire, being torn or punctured, great pressure
- Stimulating certain areas of skin (e.g., face) may aggravate phantom pain.
- Severing the nerve doesn’t help. Blocking the nerve doesn’t help. Removing the portion of the thalamus that relays the information to the brain doesn’t help!

https://www.youtube.com/watch?v=nrZO11ONxK0
Phantom limb therapy: using vision to control touch

https://www.youtube.com/watch?v=AfL9NC9f024

2 min

Touch

- Why touch?
- Detection of tactile sensations
- Cortical mechanisms of touch
- Plasticity of touch
- Proprioception
- Examples of touch research
- Super-touch in star nosed mole

Proprioception: why we need it?

Muscle command → Desired state

Automatic outcome sensor (proprioception) → Compare outcome to desired state

Proprioception: why we need it?

Muscle command → Desired state

THE MAN WHO LOST HIS BODY

Compare outcome to desired state

Proprioception: why we need it?

Muscle command → Desired state

Non-automatic outcome sensor (VISION) → Compare outcome to desired state

Ian Waterman

https://www.youtube.com/watch?v=z5CpxcsaaQI

5.5 min
Proprioception

- The sensory system’s detection and reception of movement and spatial position of limbs, trunk, and head
 - Related to the term “kinesthesis”
- Brian receives proprioception information from sensory neural pathways that begin in specialized sensory neurons known as proprioceptors
 - Located in muscles, tendons, ligaments, and joints
- Three primary types of proprioceptors
 - Muscle spindles
 - Golgi tendon organs
 - Joint receptors

1. **Muscle spindles**
 - In most skeletal muscles in a capsule of specialized sensory neurons
 - Mechanoreceptors that detect changes in muscle fiber length (i.e. stretch) and velocity (i.e. speed of stretch)
 - Function as a feedback mechanism to the brain to maintain intended limb movement position, direction, and velocity

2. **Golgi-Tendon Organs**
 - In skeletal muscle near insertion of tendon
 - Detect changes in muscle tension (i.e. force)
 - Poor detectors of muscle length changes

3. **Joint Receptors**
 - Several types located in joint capsule and ligaments
 - Mechanoreceptors that detect changes in
 - Force and rotation applied to the joint,
 - Joint movement angle, especially at the extreme limits of angular movement or joint positions

Peripheral Pathways for General Touch

Importance of Axon Diameter & Myelination

- Why touch?
- Detection of tactile sensations
- Cortical mechanisms of touch
- Plasticity of touch
- Proprioception
- Examples of touch research
- Super-touch in star nosed mole
Touch Activates Visual Cortex in the Blind

http://www.afb.org/braillebug/thenamegame.asp

Lexical decision task: word or non-word?

Educating the Sense of Touch

• Why touch?
• Detection of tactile sensations
• Cortical mechanisms of touch
• Plasticity of touch
• Proprioception
• Examples of touch research
• Super-touch in star-nosed mole

Cortical representation of 22 pink, fleshy tentacles (star-nose)

Super touch in star-nosed mole

https://www.youtube.com/watch?v=dfpBacDXTNc

3.5 min