Week 6.2
Attention
Short-term memory

10/3/2018
Roadmap

• Hemineglect
• Localization of attention in brain
• Memory
• Sensory memory
• Short-term memory
 ➢ Coding
 ➢ Capacity
 ➢ Retention
 ➢ Forgetting
 ➢ Retrieval
Hemineglect

(Source: https://goo.gl/aFuMZv)

Evidence from fMRI

- Zimmermann et al. (2012)
 - Finger tapping sequences
 - Subjects trained to either focus on their finger movements (internal focus “IN”) or the keys they have to press (external focus “EX”)
 - In the scanning session, each group did the same task but with both types of foci.
Evidence from fMRI

• Left primary somatosensory cortex
• Motor cortex
Memory

Diagram showing the processes of memory:
- Detection
- Incoming information
- Visual sensory register
- Auditory sensory register
- Olfactory sensory register
- Short-term memory
- Long-term memory
- Recognition
- Rehearsal
- Categorization
- Recoding
- Reorganization
- Manipulation
- Response output
Memory

• Encoding of input \rightarrow memory trace
• Storage and capacity
• Retrieval
• Forgetting \rightarrow Failure to retrieve memory trace
Memory

Modal model of theory

• Unattended information
 → sensory memory (iconic/visual or echoic/auditory)

• Attended information
 → Short-term memory
 → Long-term memory
Evidence supporting the existence of different types of memory

• Free-recall experiment

Listen carefully. Memorize as many words as you can
Evidence supporting the existence of different types of memory

• What factors may affect your recall?
• What are the possible confounding variables?
• Did you use any kind of strategy to help you recall?
Evidence supporting the existence of different types of memory

• What factors may affect your recall?
 ➢ Length of the list
 ➢ Whether you can see the actual object
 ➢ Speed of presentation

• What are the possible confounding variables?
 ➢ Word length
 ➢ Concreteness of words
 ➢ Word frequency
Evidence supporting the existence of different types of memory

• Serial position effect: Primacy vs. Recency effect
Evidence supporting the existence of different types of memory

• Serial position effect: Primacy vs. Recency effect
• Any way to disrupt primacy effect?
 → Speed up the presentation of words (Murdock 1962); recency effect still preserved
• Any way to disrupt recency effect?
 → Ask subjects to do a counting task before stating their recall
Evidence supporting the existence of different types of memory

• Serial position effect: Primacy vs. Recency effect
• Primacy effect: (not-so-) long-term memory
• Recency effect: short-term memory
• Any way to disrupt both recency and primacy effect?
Homework 3

• Replication of free-recall experiment
Sensory memory

Initial storage of “percepts”

• Visual (iconic)
• Auditory (echoic)
• Olfactory (smell)
• Gustatory (taste)
• Tactile (touch)
Iconic memory

• Iconic memory can be as short as one second (Neisser 1967)

• Partial-report technique (Sperling 1960)
 - Without the cue, only recall 35~45%
 - Recall performance improved when cued on what to recall
 - But the timing of cue matters!
 → If the cue is delayed (~ 1 sec), performance won’t improve compared to the whole-report condition (no cue)
Iconic memory

• Exception to the partial-report technique (Neisser 1967)
 - Letters contain both vowels and consonants
 - One cue for vowels and another cue for consonants
 - Recall performance DOES NOT improve when cued by category → Iconic memory formed before categorization
Iconic memory

• Exception to the partial-report technique
 ➢ Recall all the letters that rhyme with C
 ➢ Recall performance DOES NOT improve when cued by category

⇒ Iconic memory is visual, not auditory
How to erase your *icons* from memory?

- Present a *mask* right after the display of letters
Echoic memory

• Auditory

• Moray et al. (1965)
 - Auditory input from 4 channels
 - Strings of letters in each channel
 - Recall all the letters they heard
 - Partial-report also helps recall performance
Echoic memory

• Could be cued by category (Darwin et al. 1972)
• Larger capacity than iconic memory (Crowder 1976)
• Auditory mask (a *suffix*) presented right after the list can hinder recall of items presented auditorily

→ Suffix effect

→ *The interference of suffix is also a function of the similarity between the suffix and the items on the list*
Sensory memory - summary

• Modality specific
• Very brief
• Mostly storage of under-processed information
Short term memory

• Capacity
• Coding: the form of information being stored
• Retention
• Forgetting
• Retrieval
Short term memory

• Capacity
 ➢ Magic Seven (plus or minus two)
 ➢ One strategy for improving storage capacity: chunking

MLBONCBSNNFLONESPN

⇒ top-down process?
Short term memory

• Coding
 ➢ Representation
 ➢ The form of information being stored
 ➢ How do you memorize a string of numbers?
 ➢ Visual input (letters/numbers) → auditory code
 Feet, weed, suite, read, cheat, treat,
 ➢ Phonologically similar items cause poorer recall
Short term memory

• Retention
 ➢ ~ 20 seconds (Brown 1958; Peterson & Peterson 1959)

Try this: You will first see a string of letters. Then you will see a sequence of numbers. Count the numbers backward for 3 secs (e.g., 321, 321, 321,etc.) and then recall the letters you saw.
Short term memory

• Retention
 ➢ Peterson & Peterson 1959
 ➢ Trigrams (3-letter strings)
 ➢ 80% of people can recall the letter strings if counting lasts <= 3s
 ➢ Only 7% of people can recall the string if counting lasts >= 18 s.
 ➢ *Encoded info decays in about 20 s*
Short term memory

• Forgetting: Decay vs. Interference
 ➢ Is it the case that the encoded info decays or is interfered by something else?
 ➢ Waugh & Norman (1965)

Probe digit task
Short term memory

• Forgetting: Decay vs. Interference
 ➢ Probe digit task (Waugh & Norman 1965)
 ➢ 16-digit number
 6349203862104932
 ➢ In the example above, recall the number after the first occurrence of “2”. The last number serves as a cue.
 ➢ Two conditions: fast and slow presentation
Short term memory

• Forgetting: Decay vs. Interference
 ➢ Probe digit task (Waugh & Norman 1965)
 ➢ Hypothesis: Slow presentation should yield poorer performance than fast if the claim of information decay is valid.